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Abstract: In presence of collision between two rigid bodies, they exhibit impulsive behavior to generate physically feasible

state. When the frictional impulse is involved, collision resolution can not be easily made based on a simple Newton’s law or

Poisson’s law, mainly due to possible change of collision mode during collision, For example, sliding may change to sticking,

and then sliding resumes. We first examine two conventional methods: the method of mode evolution by differential equation,

and the other by linear complementarity programming. Then, we propose a new method for mode evolution by solving only

algebraic equations defining mode changes. Further, our method attains the original nonlinear impulse cone constraint. The

numerical simulation will elucidate the advantage of the proposed method as an alternative to conventional ones.
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1. Introduction
Consider two bodies colliding at a single point at time t.

Collision is defined as a contact with a penetrating normal

velocity. The relative velocity between two contact points

is denoted by v(t) = (vx(t), vy(t), vz(t))
T where vz(t) is the

normal component and (vx(t), vy(t)) are tangential ones. For

virtually instantaneous collision duration, they experience

impulsive momentum change entailing sign reversal of the

normal velocity. A concise approximation of momentum

change, during a pre-impact instant t− to a post-impact in-

stant t+, is expressed by the impulse-momentum equation

written as

v(t+) − v(t−) = HΓ(t− : t+), (1)

or in a componentwise form as⎡⎢⎣vx(t+) − vx(t−)

vy(t+) − vy(t−)

vz(t
+) − vz(t

−)

⎤⎥⎦ =

⎡⎢⎣X U W

U Y V

W V Z

⎤⎥⎦
⎡⎢⎣Γx(t− : t+)

Γy(t− : t+)

Γz(t
− : t+)

⎤⎥⎦, (2)

where Γk(t− : t+) is the impulse defined by

Γk(t− : t+) =

∫ t+

t−
fk(τ)dτ, k = x, y, z, (3)

and H is the inverse matrix of the effective inertia at the

contact point. Given a contact point location and the con-

figurations of two bodies, it can be computed. Every force

component of nonimpulsive nature vanishes in integrating

from t− to t+ as the duration is very infinitesimal. Only the

impulsive forces remain.

Given the velocity at t−, called the pre-impact velocity, one

has to find six unknowns consisting of the post-impact ve-

locity vector, i.e. v(t+), and the impulse vector during the

collision, i.e. Γ(t− : t+). Taking into account that the

impulse-momentum equation provides three equations, three

additional equations should be provided to determine the

unknowns. This process is referred to as the collision reso-

lution. Hereinafter, the impulse-momentum equation for a
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duration [τ1, τ2] is denoted by IM(τ1 : τ2), and each compo-

nent as IMx(τ1 : τ2), IMy(τ1 : τ2), and IMz(τ1 : τ2).

When collision occurs without friction, tangential impulse

components become zero, providing two equations such as

Γx(t− : t+) = Γy(t− : t+) = 0. Classically, one additional

constitutive equation is given by an impulse law. There are

two such laws: Newton’s and Poisson’s law. Newton’s law is

based on a kinematic coefficient of restitution ε such that

vz(t
+) = −εvz(t

−). (4)

One can partition the collision duration by two phases: the

compression phase accumulating impulse due to compres-

sion, and the expansion transferring the impulse to momen-

tum change. Poisson’s law relates the impulses during two

phases by

Γ+
z = εΓ−

z (5)

where Γ+
z = Γz(t : t+) and Γ−

z = Γz(t
− : t). It is assumed

that the end of compression and the beginning of expansion

occurs at instant t. The coefficient ε is now called the kinetic

coefficient of restitution.

Two laws lead to an identical collision resolution for friction-

less collision. When sliding velocity changes direction dur-

ing collision, Newton’s law based collision resolution cannot

account properly for energy loss due to friction. This some-

times results in energy gain during collision [1], which is def-

initely unacceptable. Hence, for frictional collision, two laws

produce distinctive results.

2. Collision Resolution due to a Single Collision
It is assumed that vz ≤ 0 (with respect to the our contact co-

ordinate frame) is only feasible due to nonpenetration. Sim-

ilarly, only the negative normal force and impulse can be

generated.

2.1. Mode evolution by differential equation

During sliding, frictional force is constrained to lie on the

boundary of the friction cone

fx =
µdvx√
v2

x + v2
y

fz; fy =
µdvy√
v2

x + v2
y

fz
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with the opposite direction to the sliding velocity, where µd

is the dynamic friction coefficient. It is transferred to the

impulse domain as

dΓx

dΓz
=

µdvx√
v2

x + v2
y

;
dΓy

dΓz
=

µdvy√
v2

x + v2
y

, (6a)

since dΓk =
dΓk(t− : τ)

dτ
dτ = fk(τ)dτ for k = x, y, z.

Differentiating the impulse-momentum equation IM(t− : τ)

with respect to the normal impulse Γz(t
− : τ) yields

d

dΓz

⎡⎢⎣vx

vy

vz

⎤⎥⎦ = Hξ(vx, vy), ξ(vx, vy) =

⎡⎢⎢⎢⎣
µdvx√
v2

x + v2
y

µdvy√
v2

x + v2
y

1

⎤⎥⎥⎥⎦, (7)

where ξ(vx, vy) is the sliding direction vector. The rows of

the matrix H are denoted by Hx, Hy, and Hz, respectively.

This is an ordinary differential equation with respect to Γz.

It is called the sliding differential equation [2].

Keller [3] reached the sliding differential equation by time-

scaling. In planar case, Routh’s algebraic incremental model

is equivalent to analytically solving the sliding differential

equation, as shown by Wang and Mason [4].

For three-dimensional case, the sliding differential equation

is first integrated with respect to Γz from 0 while check-

ing whether the normal velocity vz becomes zero (signal-

ing the end of compression) and whether the sliding veloc-

ity becomes zero (indicating the occurrence of sticking), i.e.√
v2

x + v2
y = 0. If the end of compression is signaled, the

value of Γz at the instant is latched to Γ−
z . Then, the

sliding differential equation is integrated further from Γ−
z

to (1 + ε)Γ−
z , while checking for sticking. The termination

condition reflects Poisson’s hypothesis (5). If no such event

arises, one gets finally the post-impact velocity v(t+).

If sticking occurs during either compression or expansion

phase, then its stability is examined, which determines

whether the sticking would prevail throughout the remaining

phases or sliding would resume. In either case, the remain-

ing periods can be integrated analytically using constancy of

direction of the sliding vector [2].

Mirtich [2] proposed to use the sliding differential equation

with different parameters instead of Γz. The normal velocity

vz is used as an independent parameter during compression,

while the normal work wz during expansion. This enables to

explicit specification of the terminal condition. Of particular

interest is that the Stronge’s energetic coefficient of restitu-

tion [5] can be applied to stipulate explicitly the energy loss

during collision process.

2.2. Mode evolution by linear complementarity pro-

gramming (LCP)

One can impose impulse cone constraint

Γ2
x + Γ2

y ≤ µ2Γ2
z (8)

instead of friction cone. This impulse cone constraint is as-

sumed to hold for the compression and expansion phases,

that is each Γk can be either Γ−
k = Γk(t− : t) or Γ+

k = Γk(t :

t+) for k = x, y, z.

Glocker and Pfeiffer [6] formulated two linear complemen-

tarity conditions for each phase in case of planar collisions.

The compression is subject to

−vz(t) ≥ 0 ⊥ − Γ−
z ≥ 0 (9)

at the end of compression. The symbol ’⊥’ denotes that

two variables are complementary, i.e. x ≥ 0 ⊥ y ≥ 0

for two vectors of same dimension means xi · yi = 0 for all

i. The expansion is defined by Γ+
z = εΓ−

z + Γ̃z, where the

additional impulse Γ̃z is complementary to the post-impact

normal velocity v+
z = vz(t

+), i.e.

−v+
z ≥ 0 ⊥ − Γ̃z ≥ 0. (10)

According to their method, the normal impulse during ex-

pansion phase is composed of two components, one trans-

ferred from (the fraction of) the normal impulse during com-

pression phase, i.e. Γ−
z , and the other required to prevent

interpenetration at the end of expansion.

The same model was adopted in Anitescu and Po-

tra [7], while developing three-dimensional collision resolu-

tion method. Approximating the quadratic impulse cone

constraint using an inscribed polyhedral cone having p

edges [8], [7]

ÎC = {ẑΓz + χΓt| − Γz ≥ 0, Γt ≥ 0, eT Γt ≤ −µΓz}, (11)

where ẑ = (0, 0, 1)T and e = (1, 1, · · · , 1)T ∈ R
p. The vec-

tor Γt consists of (Γ
(1)
t , Γ

(2)
t , · · · , Γ

(p)
t )T ∈ R

p. The matrix

χ consists of p columns of the form
[
χ

(j)
x χ

(j)
y 0
]T

. The

columns of the matrix χ span the tangent plane at the con-

tact. It is assumed that for every i there is a j such that

χ(i) = −χ(j). One can simply set[
χ

(j)
x

χ
(j)
y

]
=

[
cos(2πj/p)

sin(2πj/p)

]
(12)

for j = 0, 1, · · · , p−1. Then the following linear complemen-

tarity holds

(λe + χT v) ≥ 0 ⊥ Γt ≥ 0; (13a)

(−µΓz − eT Γt) ≥ 0 ⊥ λ ≥ 0 (13b)

for each phase, i.e. v = v(t) or v+, Γt = Γ−
t or Γ+

t , Γz =

Γ−
z or Γ+

z , and λ = λ− or λ+, respectively. This enables

the linearized impulse cone to reproduce the original one

approximately.

During compression the impulse-momentum equation with

the approximated impulse is written as

H−1(v(t) − v−) =
(
ẑΓ−

z + χΓ−
t

)
(14)

where v− = v(t−) is the pre-impact velocity. Together with

(10) and (13), this leads to⎡⎢⎢⎢⎣
H−1 ẑ −χ 0

−ẑT 0 0 0

χT 0 0 e

0 µ −eT 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

v(t)

−Γ−
z

Γ−
t

λ−

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣

H−1v−

0

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

−vz(t)

σ−

ζ−

⎤⎥⎥⎥⎦;
⎡⎢⎣−vz(t)

σ−

ζ−

⎤⎥⎦ ≥ 0 ⊥

⎡⎢⎣−Γ−
z

Γ−
t

λ−

⎤⎥⎦ ≥ 0.
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The impulse-momentum equation during expansion phase is

expressed as

H−1(v+ − v(t)) =
(
ẑΓ̃z + χΓ+

t

)
+ εẑΓ−

z . (15)

The impulse due to restitution, εΓ−
z acts as an external im-

pulse. Coupled with the complementarity conditions, the

system is described by⎡⎢⎢⎢⎣
H−1 ẑ −χ 0

−ẑT 0 0 0

χT 0 0 e

0 µ −eT 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

v+

−Γ̃z

Γ+
t

λ+

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣

H−1v(t) + εẑΓ−
z

0

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

−v+
z

σ+

ζ+

⎤⎥⎥⎥⎦;
⎡⎢⎣−v+

z

σ+

ζ+

⎤⎥⎦ ≥ 0 ⊥

⎡⎢⎣−Γ̃z

Γ+
t

λ+

⎤⎥⎦ ≥ 0,

Eliminating noncomplementary variable v(t) and v(t+) from

each mixed LCP given above yields the following LCPs⎡⎢⎣−vz(t)

σ−

ζ−

⎤⎥⎦ = M−

⎡⎢⎣−Γ−
z

Γ−
t

λ−

⎤⎥⎦ + b−; (16a)

⎡⎢⎣−v+
z

σ+

ζ+

⎤⎥⎦ = M+

⎡⎢⎣−Γ+
z

Γ+
t

λ+

⎤⎥⎦ + b+; (16b)

where

M− = M+ =

⎡⎢⎣0 0 0

0 0 e

µ −eT 0

⎤⎥⎦ +

⎡⎢⎣−ẑT

χT

0

⎤⎥⎦H[−ẑ χ 0
]
;

b− =

⎡⎢⎣−ẑT

χT

0

⎤⎥⎦v−; b+ =

⎡⎢⎣−ẑT

χT

0

⎤⎥⎦ (v(t) + εHẑΓ−
z

)
.

It was shown that these two LCPs always have a solution

which can be computed efficiently by Lemke’s complemen-

tary pivoting algorithm. [9], [8], [7]

3. Mode Evolution by Algebraic Equations
Suppose that collision begins at time t− and finishes at t+.

For any intermediate period [τ1, τ2] such that t− ≤ τ1 <

τ2 ≤ t+, the behavior is partially governed by the impulse-

momentum equation IM(τ1 : τ2)

The method of mode evolution by LCP progresses the col-

lision mode across only two modes, i.e. compression and

expansion. As such, the method do not care if sticking or

resumed sliding occur during each mode. To the contrary,

the collision mode evolves according to the sliding differen-

tial equation in the method of mode evolution by differential

equation. However, numerical integration has some undesir-

able effects, such as much heavier computation.

In this section, we propose a new method to mode evolution,

which solves a set of algebraic equations sequentially defining

mode changes, called events. Further, the quadratic impulse

cone is attained without any approximation. Except the al-

gebraic nature of the method, it is of much similar character

as the one by differential equation in the sense that colli-

sion mode evolves step by step depending on whether some

events happened or not. Each mode is triggered by an event.

It depends on events whether a mode is terminated and new

mode initiates, or the mode continues. Events are described

by their own defining algebraic equations.

3.1. Nonlinear complementarity form of Frictional

impulse law

The method adopts the quadratic impulse cone (8). In the

LCP based method, an approximated cone constraint is ap-

plied only for two modes. To the contrary, the exact cone

constraint is applied as many times as the number of evolved

modes. It is not a priori determined how many modes would

generate without sequentially enumerating every possible

event.

Governing equations for each mode should be composed of

six equations, three of them already given by the impulse-

momentum equations. Additional constitutive equations

are provided by mode definition. For example, persistent-

sticking mode would entail two equations that vx and vy

vanish identically during the mode. If sliding prevails during

a mode, the mode definition readily produces one condition

Γ2
x + Γ2

y = µ2
dΓ2

z.

As expected, mode definitions involve the impulse cone con-

straints in one way or the other. For unified generation

of mode definitions, we propose the following (nonlinear)

complementarity formulation between the tangential impulse

vector and the sliding velocity vector. We consider a mode

which is triggered at τ1 and extends to τ2.

v2
x(τ2) + v2

y(τ2) ≥ 0;

⊥ µ2
dΓ2

z(τ1 : τ2) − Γ2
x(τ1 : τ2) − Γ2

y(τ1 : τ2) ≥ 0. (17)

Being in this form, it is not a standard nonlinear comple-

mentarity form [9].

It should be observed that two enumerative cases resulting

from the complementarity are not symmetric in number of

equations it generates. The first case v2
x(τ2) + v2

y(τ2) = 0

yields two equations vx(τ2) = vy(τ2) = 0, whereas the second

gives only one equation µ2Γ2
z(τ1 : τ2) = Γ2

x(τ1 : τ2) + Γ2
y(τ1 :

τ2). This unbalance is dealt with by the following algebraic

equation and inequality

Γx(τ1 : τ2)vy(τ2) − Γy(τ1 : τ2)vx(τ2) = 0 (18a)

Γx(τ1 : τ2)vx(τ2) + Γy(τ1 : τ2)vy(τ2) ≤ 0. (18b)

They are concerned with the direction of impulse vector

when the mode finishes at τ2.
1

3.2. Mode evolution by event enumeration

It has been mentioned that it is determined how a mode

evolves by enumerating every possible event. Possible mode

evolutions are illustrated by Fig. 1.

Suppose that v2
x(t−) + v2

y(t−) > 0, sliding at t−. Then,

the mode CSlide (Compression-Sliding) is initiated. Now

1In particular, if v2
x(τ2) + v2

y(τ2) �= 0, they are equivalent to the single

condition atan2(Γy, Γx) − atan2(vy, vx) = π, which stipulates that the

tangential impulse vector is opposite to the sliding velocity vector. However,

when v2
x(τ2) + v2

y(τ2) = 0, this does not hold, as atan2(Γy, Γx) = π. To

the contrary, the proposed conditions (18a) and (18b) are trivially satisfied.

1771



EndExp

EndComp

EStick

CStick

CSlide

Stability no

CRSlide

yes

PCStick

yes no

CSlide

Stability no

ERSlide

yes

PEStick

yes

ESlide

ESlide

no

BeginComp

Fig. 1. Mode evolution by event enumeration

the events CStick (Compression-Sticking) is checked us-

ing its governing equations. If the occurrence is denied,

then the event EndComp (End-of-Compression) is trig-

gered and the mode CSlide finishes and the new mode ES-

lide (Expansion-Sliding) begins. Now, the event EStick

(Expansion-Sticking) is examined of its existence. If it does

not exist, then the mode continues to the event EndExp

(End-of-Expansion). Were the event EStick affirmed, the

stability of sticking should be examined. A New mode PE-

Stick (Persistent-EStick) begins for stable sticking, while

the mode ERSlide (Expansion-Resumed-Sliding) initiates

for unstable sticking. Then either method prevails until the

event EndExp. In case of the event CStick, either the

mode PCstick (Persistent-CStick) or the mode CRSlide

(Compression-Resumed-Sliding) follows depending on the

stability of CStick. Then, either mode continues through

the events EndComp and EndExp.

3.2.1 Governing equations for the event CStick

While in the mode CSlide, the event CStick is affirmed

in the case of the existence of a time instant τ ≤ t such

that v2
x(τ) + v2

y(τ) = 0, while v2
x(σ) + v2

y(σ) > 0 for ∀σ ∈
[t−, τ). The condition is readily expressed by the following

two equations in light of (18)

vx(τ) = vy(τ) = 0; (19a)

and

µ2
dΓ2

z(t
− : τ) = Γ2

x(t− : τ) + Γ2
y(t− : τ). (19b)

The latter expresses the property that sliding has prevailed

just before CStick. These three equations complement the

impulse-momentum equation IM(t− : τ). It should be noted

that the existence of such hypothetical τ is not yet validated.

After substituting (19a) to IMx(t− : τ) and IMy(t− : τ) and

solving for Γx(t− : τ) and Γy(t− : τ), the intermediate result

being plugged into IMz(t
− : τ) yields the normal velocity at

τ , the CStick instant, by

vz(τ) =
D31vx(t−) + D32vy(t−) + D33vz(t

−)

D33
+

D

D33
Γz(t

− : τ),

(20)

where

D31 = UV − Y W ; D32 = UW − XV ; D33 = XY − U2.

Later, the following subdeterminants are also of interest

D11 = Y Z − V 2; D21 = WV − UZ; D22 = XZ − W 2

with the following determinant

D = WD31 + V D32 + ZD33.

By substituting the intermediate Γx(t− : τ) and Γy(t− : τ)

in (19b), the governing equations for the existence of CStick

reduce to the quadratic equation in Γz(t
− : τ)

q(Γz(t
− : τ)) := QΓz(t

− : τ)2 + LΓz(t
− : τ) + C = 0 (21)

with

Q = D2
33

(
µ2

d − λ
)

L = 2((D31Y − D32U)vx(t−) − (D31U − D32X)vy(t−))

C = −(Y vx(t−) − Uvy(t−))2 − (Uvx(t−) − Xvy(t−))2

where

λ =
D2

31 + D2
32

D2
33

. (22)

The inertia related quantity λ is used to check the stability

of sticking, as shown below.

Since CStick should occur no later than the event End-

Comp, the candidate solution should satisfy

−Γz(t
− : τ) ≥ 0; −vz(τ) ≤ 0.

These inequalities are called the event hypotheses. They

should be passed to guarantee the existence of CStick. In

view of (20), the assumption hypotheses are succinctly ex-

pressed as

0 ≤ −Γz(t
− : τ) ≤ γ, (23)

where

γ =
D31vx(t−) + D32vy(t−) + D33vz(t

−)

D
. (24)

Among the solutions to (21), only the one satisfying (23) is

feasible.

3.2.2 Sticking Stability

Suppose that the event CStick has occurred. This signals

the termination of the mode CSlide. One has to examine

whether sliding would resume or sticking would continue to

hold. This can be confirmed by examining whether the line

of sticking lies inside the friction cone [4]. The line of sticking

is defined by

−vx(t−) = XΓx(t− : σ) + UΓy(t− : σ) + WΓz(t
− : σ)

−vy(t−) = UΓx(t− : σ) + Y Γy(t− : σ) + V Γz(t
− : σ)

as vx(σ) = vy(σ) = 0. It is readily verified that the angle θ

it makes with the Γz-axis is such that

tan θ =

√
(Y W − UV )2 + (UT W − XV )2

−XY + UUT
.
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The friction cone has the angle α such that tan α = µs for

the static friction coefficient µs. One can see that if

(Y W − UV )2 + (UW − XV )2

(XY − U2)2
= λ ≤ µ2

s (25)

where λ is the one defined by (22), the line of sticking lies

within the friction cone from the event CStick. Otherwise,

sliding should resume. It is worth noting that it depends

only on the inertial parameter, λ, and the static friction co-

efficient whether sticking is stable or not. The condition (25)

is identical to the one given by Mirtich [2, Ch. 3, Thm. 9].

3.2.3 The mode PCStick

If λ ≤ µ2
s, then sticking remains persistent, till the end of

expansion phase. This mode is called PCStick.

During this mode, the event EndComp is defined by

vz(t) = 0; vx(t) = vy(t) = 0. (26)

These three conditions together with IM(τ : t) determine

completely the state at EndComp. When eliminating

Γx(τ : t) and Γy(τ : t) from IMx(τ : t) and IMy(τ : t),

then IMz(τ : t) yields

Γz(τ : t) = −D33

D
vz(τ).

Substituting vz(τ) from (20), we get

Γz(τ : t) = −Γz(t
− : τ)−D31vx(t−) + D32vy(t−) + D33vz(t

−)

D
.

(27)

The normal impulse for the whole compression phase, i.e.

Γz(t
− : t) = Γz(t

− : τ) + Γz(τ : t), in PCStick is given by

Γz(t
− : t) = −D31vx(t−) + D32vy(t−) + D33vz(t

−)

D
. (28)

In view of (24), one can see that Γz(t
− : t) = −γ.

The event EndExp in PCStick is defined by vx(t+) =

vy(t+) = 0 (because of PCStick) and the termination condi-

tion due to Poisson’s law of impulse Γz(t : t+) = εΓz(t
− : t).

Solving IM(t : t+) for the post-impact normal velocity

vz(t
+), we get

vz(t
+) =

D

D33
Γz(t : t+) = ε

D

D33
Γz(t

− : t). (29)

Making use of (28) leads to

vz(t
+) = − ε(D31vx(t−) + D32vy(t−) + D33vz(t

−))

D33
. (30)

3.2.4 The mode CRSlide

Despite the event CStick, sliding resumes if the friction co-

efficient is not large enough in the sense of (25).

The mode CRSlide first encounters the event EndComp

defined by vz(t) = 0 with IM(τ : t)

vx(t) = XΓx(τ : t) + UΓy(τ : t) + WΓz(τ : t) (31a)

vy(t) = UΓx(τ : t) + Y Γy(τ : t) + V Γz(τ : t) (31b)

−vz(τ) = WΓx(τ : t) + V Γy(τ : t) + ZΓz(τ : t) (31c)

Because sliding prevails at the end of compression, the im-

pulse cone complementarity (17) and (18a) are resolved by

0 = µ2
dΓ2

z(τ : t) − Γ2
x(τ : t) − Γ2

y(τ : t) (31d)

0 = Γx(τ : t)vy(t) − Γy(τ : t)vx(t). (31e)

Eliminating Γz(τ : t) form (31c)

Γz(τ : t) = −W

Z
Γx(τ : t) − V

Z
Γy(τ : t) − 1

Z
vz(τ), (32)

reduces the impulse cone magnitude condition given by (31d)

to a conic equation in the tangential impulse domain (Γx(τ :

t), Γy(τ, t))

0 = (µ2
dW 2 − Z2)Γ2

x(τ : t) + (µ2
dV 2 − Z2)Γ2

y(τ : t)

+ 2µ2
dV WΓx(τ : t)Γy(τ : t) + 2µ2

dWvz(τ)Γx(τ : t)

+ 2µ2
dV vz(τ)Γy(τ : t) + µ2

dv2
z(τ). (33)

Further eliminating vx(t) and vy(t) from (31a) and (31b)

vx(t) =
D22

Z
Γx(τ : t) − D21

Z
Γy(τ : t) − W

Z
vz(τ) (34a)

vy(t) = −D21

Z
Γx(τ : t) +

D11

Z
Γy(τ : t) − V

Z
vz(τ), (34b)

the impulse cone direction constraint, i.e. (31e), yields an-

other conic equation

0 = −D21Γ
2
x(τ, t) + D21Γ

2
y(τ, t) + (D11 − D22)Γx(τ : t)Γy(τ : t)

− V vz(τ)Γx(τ : t) + Wvz(τ)Γy(τ : t). (35)

The two equations define quadratic curves in the impulse do-

main (Γx(τ : t), Γy(τ, t)) of the form AΓ2
x + BΓ2

y + CΓxΓy +

DΓx + EΓy + F = 0. They are solved numerically to yield

(Γx(τ : t), Γy(τ, t)). Among possibly more than one solu-

tions, the one satisfying (18b) is the desired one. Then, (28)

is used to compute Γz(τ : t). The total normal impulse

during compression phase is given by Γz(t
− : t) = Γz(t

− :

τ) + Γz(τ : t), where Γz(t
− : τ) is computed previously in

determining CStick.

Next the EndExp is determined by solving IM(t : t+) with

Γz(t : t+) given by Γz(t : t+) = εΓz(t
− : t). As sliding

prevails at the end of expansion, the sliding velocity vector

at t+ and the tangential impulse vector satisfies

0 = µ2
dΓ2

z(t : t+) − Γ2
x(t : t+) − Γ2

y(t : t+)

0 = Γx(t : t+)vy(t+) − Γy(t : t+)vx(t+),

In the impulse domain (Γx(t : t+), Γy(t : t+)) they define the

following conics

0 = Γ2
x(t : t+) + Γ2

y(t : t+) − µ2
dε2Γ2

z(t
− : t) (36)

0 = UΓ2
x(t : t+) − UΓ2

y(t : t+) + (Y − X)Γx(t : t+)Γy(t : t+)

+ (εV Γz(t
− : t) + vy(t))Γx(t : t+)

− (εWΓz(t
− : t) + vx(t))Γy(t : t+). (37)

Solving these equations yields the tangential impulse at t+,

which being substituted to IM(t : t+) generates the post-

impact sliding velocity and normal velocity.
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Fig. 2. Collision resolution for µ = 0.1 (’–’ : Park’s/’- -’: Anitescu’s/’-·-’: Routh’s)
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Fig. 3. Collision resolution for µ = 0.5 (’–’ : Park’s/’- -’: Anitescu’s/’-·-’: Routh’s)
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Fig. 4. Collision resolution for µ = 1.0 (’–’ : Park’s/’- -’: Anitescu’s/’-·-’: Routh’s)

3.2.5 Remaining modes and events

The remaining modes can be determined by event enumera-

tion using the same technique as described above.

4. Numerical Simulation

Consider a single collision with H =

⎡⎢⎣ 8 −2 1

−2 3 −1

1 −1 5

⎤⎥⎦(kg−1)

with vz(t
−) = 15(m/sec). Initial sliding velocity vx(t−) and

vy(t−) are sampled by[
vx(t−)

vy(t−)

]
=

[
β cos(2π(j − 1)/32)

β sin(2π(j − 1)/32)

]
(m/sec)

with β = 10(m/sec) for k = 1, 2, · · · , 32. To examine

a greater spectrum of collision resolution behavior, a va-

riety of combinations of collision parameters, consisting of

µ = µd = µs, the friction coefficient, and ε, coefficient of

restitution, were employed from µ = 0.1 (low friction), 0.5
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(moderate friction), 1.0 (high friction) and from ε = 0.1

(somewhat inelastic), 0.5 (partially elastic), 0.9 (somewhat

elastic). All three collision resolution methods were sim-

ulated: Routh’s method, Anitescu’s method, and the pro-

posed method referred to as Park’s method.

Figs. 2, 3, 4 summarized the simulation result for almost fric-

tionless case (µ = 0.01), light friction case (µ = 0.1), moder-

ate friction case (µ = 0.5), and high friction case (µ = 1.0),

respectively. For each figure, subfigures (a), (b), and (c)

corresponds to inelastic case (ε = 0.1), partially elastic case

(ε = 0.5), and elastic case (ε = 0.9). In the figures, initial

sliding velocities are plotted as diamonds in the figure. The

light lines display flows of the sliding velocities for Routh’s

method, while for Park’s and Anitescu’s method, both of

which are algebraic method in nature, they simply inter-

connect the initial sliding velocity and the corresponding fi-

nal sliding velocity. Post-impact velocities are connected by

thicker lines for each method. Different line styles are used

to indicate the associated method: ’–’ (black) for Park’s, ’-

-’ (red) for Anitescu’s, ’-·-’ (blue) for Routh’s method. The

color in parentheses indicates the color if you see them in

color.

As a matter of fact, for frictionless cases all the methods

generate virtually same post-impact sliding velocities for

all restitution coefficients. The coincidence cannot be ob-

served any more for frictional cases. In particular, Anitescu’s

method based on LCP deviates conspicuously qualitatively

and quantitatively as the restitution becomes more elastic,

or coefficient of restitution gets larger. Qualitative difference

becomes significant when one compares the behavior shown

in Fig. 4 (a), (b), and (c). All the other methods predicted

persistent sticking for all initial sliding velocities, while An-

itescu’s predicted sliding post-impact velocity for every ini-

tial velocity. To the contrary, it can be said that Park’s

method and Routh’s method generated quite similar behav-

ior for highly frictional collisions. For moderate friction,

shown in Fig. 3, the loci of post-impact velocities for them

are quite similar except Park’s method produces a slightly

more spread results. Numerical evaluation of energy loss

would reveal that Park’s method generally dissipates a less

energy, hence larger sliding velocity, than Routh’s method.

One can see a more significant difference for light friction

case, as shown in Fig. 2.

5. Concluding Remarks
In this article, collision resolution methods were analyzed. It

is worth noting that rigid collision models are only approxi-

mations of complex physical processes involving wave prop-

agation, nonnegligible flexibility and the like. In some cases,

experiments report that the approximation is quite faithful

in predicting the behavior summarized with the post-impact

velocities [10], which supports the utility of such rigid colli-

sion models. However, the approximation can never be uni-

versally correct. It becomes clear through numerical experi-

ments that the LCP-based model is not suitable as it cannot

handle sticking occurring during collision. The model based

on the sliding differential equation seems compatible with

the physical process of collision under good identification of

collision parameters, mainly consisting of frictional and resti-

tution coefficient. However, it involves numerical integration

of differential equations. Our experience tells that as friction

coefficient gets larger, it takes longer to tend to sticking, as

the equation becomes closer to singularity. One can apply

the proposed method as an alternative. It can handle stick-

ing and resumed sliding only by solving a set of algebraic

equations, which is less time-consuming. Theoretical valid-

ity can be said to be of a same degree as the differential

equation based method, if the impulse cone constraint ap-

proximates the real impulse vector during collision the same

degree as the friction cone constraint approximates the real

impulse. Numerical experiments corroborated the validity

of the proposed method as an efficient alternative to the dif-

ferential equation based methods. An experiment is to be

conducted which would advocate the predicting capability

of the proposed method of real collision phenomena.
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