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Two-Dimensional Simulation of MOS Transistors

Using Numerical Method
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Abstract

A two-dimensional numerical analysis program, called SOMOS (simulation of MOS
transistors), has been developed for the simulation of MOSFET’s with various channel
lengths and bias conditions. The finite difference approximation of the fundamental equa-
tions are formulated using Newton’s method for Poisson’s equation and the divergence
theorem for the continuity equation.

For the solution of the linearized equations, SOR (successive over relaxation) method
and Gummel’s algorithm have been employed. The total simulation time for one operating
point is varying between 30 sec. and 4 min. on VAX 11/780 depending on bias conditions.
The nonuniform mesh was generated and refined automatically to account for various bias
values and the potential distributions.

I. Introduction the rapid technological advances in the field
of semiconductor device processing, one is
As the transistor dimensions shrink with compelled to use the numerical models to

retain the computational accuracy.

The first consistent simulation model
incorporating the fundamental semiconductor
transport equations was reported by Gummel
BXHT I 1985F 57 28H for the bipolar transistor./1/ There followed a
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flood of analogous work with refinements and
improvements in one way or another. In this
work, a computer program called SOMOS
(simulation of MOS transistor) was developed,
where the doping profiles are given as the
starting point for solving the Poisson’s equation
and the continuity equation in two-dimiensionai
finite-difference grid space.

The two dimensional equi-distance doping
profile, which may be taken from the two
dimensional process simulation result for the
source and drain, is used for more accurate
estimation of the lateral diffusion. SUPREM/
6/, the Stanford University Process Engineering
Model program, or DIFSIM /4/ can be used to
give the one dimensional equi-distance doping
profile fcs the simulation of the channel im-
planted MOS transistors.

Since the mesh allocation strongly affects
the convergence characteristics of system
equations, an adaptive grid system with varying
mesh size was employed.

Finally, several electrical characteristics of
the MQS transistor was shown for demonstra-
tion purpose.

II. Model Description

In this chapter the fundamental semicon-
ductor equations, the necessary physical
assumptions and some models for a two
dimensional numerical analysis of MOSFET
will be discussed.

1. Basic Semiconductor Equations

The electrical behavior of electronic devices
is governed by electromagnetic field equations.
It is known that for silicon devices with di-
mension of a few microns and for frequency up
to 10%° Hz, the quasi-static approximation of
the field equations is valid. These equations
are contained in the following five equations,

div grad Y= —q (p—n+ND*—NAT) (1)

div J —q( on/dt) =q R (2)
div J_ +q (dp/0t) = —q R 3)
Jn = =q (up n grad Y —Dy, grad n) )
Jp =—q (up p grad Y+Dp grad p) (5)

where all the symbols have their conventional
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meanings.

Eq. (1) is Poisson’s equation for the electro-
static potential. Eq. (2), (3) are called the
continuity equations.

This set of equations was first given in closed
form by Van Roosbroeck /7/ in 1950.

2. Model Equations with Its Chosen
Assumptions

A number of assumptions have been intro-
duced into the model to simplify the computa-
tion without a considerable loss of accuracy.

a. Only steady-state solutions are sought.
on/dt=0 (6)
Op/0t=0 (7)

b. Dielectric constant of silicon and oxide

are isotropic.

c. Total ionization of the donor and ac-

ceptor impurities is assumed.

C=ND*— NA"=ND-NA (8)
d. Degeneracy phenomena will not be con-
sidered.
n; = const 9)
e. Majority carrier current is neglected
Jp = 0 (for n-channel MOS) (10)
Jn = 0 (for p-channel MOS) (11)

f. The operating temperature throughout
the entire transistor is constant.

g. The carrier distribution is described by
Boltzman statistics.

n=n;e (1[/—¢p)/VT (12)

p=nje(@y=¥)Vyp (13)
h. The Einstein relation is assumed to be

valid.

Dn = IJn VT (14)

Dp=u, Vy (15)

1) All Contacts are Assumed to be Ohmic.
The space change vanishes at the contacts, and
the carrier distribution is in the thermal equili-
blium.

A normalization into dimensionless form
is carried out following De Mari /2/.

From the chosen assumptions found and
those normalization factors the model is
reduced to the following nonlinear system
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of partial differential equations:
For the n-channel devices:

div grad y=ey-¢pn—epP—y— C (16)
div J,=R

Jn=—u ngradé,

d’p = const (that is, Jp=0).

For p-channel devices

div grad y= e‘lj—(bn - e¢P—.C a7
div Jp =—R
Jp =Tu,p grad $p

¢n = const ( that is, J,,=0)

Eq. (16) and (17) actually describe a
coupled system of two nonlinear differential
equations.

3. Physical Parameters

a. The intrinsic carrier concentration is model-
ed as being only temperature dependent.

n;=3.88x10"6xT!5xe 70T cy3  (15)

where T denotes the temperature in degree
Kelvin.

b. Shockly-Read-Hall model is used for the
description of thermal generation.

—n2
pn—nj (19)

Tp(mni) +T (p+ni)

RgRrH =

where 7, 7. denote the carrier lifetime.

The generation rate term due to the impact

or avalanche ionization mechanism and

band-to-band recombination terms are
neglected in this work.
c. Doping profile

The doping profile is the starting and the
most important parameter for the simulation of
the transistors.

There are two types of doping profile in
SOMOS.

One is a two-dimensional doping profile in
uniform grid for the source and the drain, the
other is one dimensional doping profile, in
uniform grid with the grid size basically dif-
ferent from that of 2-D profile, for the channel-

implanted transistors.

The 1-D doping profiles can be given by
one of the available process simulators, such as
SUPREM /6/, DIFSIM (one-dimensional pro-
cess simulation program developed at KAIST)
/4/. Likewise, the 2-D profile can be obtained
via 2-D process simulators such as PRECISE,
which is a 2-D version of DIFSIM /5/.

d. Carrier mobility,

Carrier mobility is degraded by various
scattering mechanisms. First of all, carriers
are scattered by defects resulting in the relative-
ly high bulk mobility.

This lattice mobility is reduced by additional
coulomb scattering at ionized impurity atoms.

Caughey and Thomas /8/ have given the
following empirical expression fitting experi-
mental data for carrier mobilities:

_ Hmax— M min
M(NT) = Hmin* 1+ (NT/Nref)cE (20)

where NT= ND + NA is the total doping con-
centration.

Fitting Eq. (20) to more recent measure-
ments leads to the coefficients given in Table 1.

Table 1. Mobility parameters

M max M max Nref o
(cm?visl) (ecm2vlsly (em®) | ~

electron 1360 92

1.3x10Y7 | 0.91

hole 520 65 2.4x10Y | 0.61}

Measurements have shown that for high
excess carrier densities mobility is further
reduced by electron-hole scattering.

" Following /9/, the experimental data can be
fitted by replacing the total doping concentra-
tion in (20) by the expression

NT=0.34 (ND+NA) + 0.66 (1) (21)

with I = p + n and using the coefficients of
Table 1.

The field dependence measured in low-
doped material can be taken into account by
the expression

HONLE)=u (N 1+ QN REV , TP (22)
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with fn=2 and Bp=1 resulting in doping-
independent limiting drift velocities of

Vmax, n = 1.1 x 107 cm/s (23)

and Vmax,p =9.5x10% cm/s

Another important fact in MOSFET simula-
tion is that the channel mobility is further
reduced by surface scattering of carriers due
to surface roughness.

Following /10/, this effect can be taken
into account by splitting the electric field
strength into two components, E;; and E,
which are longitudinal and transversal to the
direction of current flow.

In this work, the E term used in Eq. (22)
represents E;; and the resulting mobility is
further reduced by

u(N.Eyp , E)=u(NEy )1+ B2 (24)

with « = 1.54x105cm/V and ap=5.35x1o'5
cm/V.

III. Numerical Treatment

In order to transform the physical model
of a semiconductor device into a numerical
model, fundamental equations are linearized
to ease the discretization process.

Through this chapter the recurrent FDM
(Finite Difference Method) equations are

formulated with the applicable boundary

conditions.

1. Solution Method

Although the system of equations examined
in the following is exclusively for NMOS
transistor an extension to handle PMOS tran-
sistor is obvious because the equations for the
PMOS transistor are structually identical to
those of NMOS transistor.

For the purpose of clarity and for preven-
tion of numerical over6 underflow, this system
is generally represented in its normalized form,

divgrady =n—p—-C (25)

(515)
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. P
div (un n grad ¢n) = Tp(n.+1)+7n(p+l). (26)

with in=e ¥ % p=e¢l;‘l/

¢p= const C=C(x,y)
Hy = pn(x,y) T,= const
Tp = const

For the solution of this system, 2N non-
linear equations have to be solved, where N is
the number of grid points and usually lies be-
tween 300 and 4000 in the two-dimensional
case. Therefore, it is of great importance to
choose an efficient algorithm to minimize the
computational cost.

A simple choice is that one treats eq. (25)
and eq.(26) separately in a decoupled manner
and solving one after the other repetitively.
First, Poisson’s equation is solved assuming
known quasi-Fermi level. Next comes the
continuity equation with the potential given
from the solution of Poisson’s equation.

This sequence is iteratively repeated until
self-consistent values of the desired accuracy
for all unknown variables are obtained/1/.

This approach is advantageous for multi-
dimensional simulations as it saves storage and
converges quite well especially if the coupling
between the two equations is weak.

This relatively simple implementation of
the decoupled method has to be paid for by
its possible slow convergence especially if
eq. (25) and eq. (26) are strongly coupled.

These convergence problems can be over-
come mathematically by solving eq. (25) and
€q. (26) simultaneously rather than alternative-
ly. Although this simultaneous Newton
method is advantageous from a purely mathe-
matical viewpoint, it is more involved with
regard to storage requirements. Some charac-
teristics of these two methods are compared
in /11/.

In this work, we chose the conventional
decoupled method for no other obvious reason
than simplicity.

Poisson’s equation is considered as a non-
linear equation in Eq. (25) while ¢p, d)p are
known.
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One first applies the Newton-like formula-
tion for the linearization of Poisson’s equation
and after simple algebraic transformation,

wk+1=wk+8 (27)
div grad 6-8 (n+p)=n-p-C-div grad vKi002)
with n=e¥ %

b= Op¥

In above equations, Yk denotes the value
of Y after k-th iteration.

Because of the exponential terms in
Poisson’s equation, some authors /12/,/13/
have proposed the damping of the corrective
potential term, 6, in order to prevent an
eventual overshooting of Newton procedure.

This can be done in the following manner
/12/:

evaluate for each element

8, for 18,1 <1 (28)
sgn (8;) |8i|1/5 , for 1 <|8,1 <3.7
sgn (8,) £ I8i| , for |6i|>3.7

8

The relevant literature offers a wide spec-
trum of similar variants /13/.

The linearization of the continuity equation
can be achieved by the analogous way as was
explained for Poisson’s equaton, but this
linearization can, in general, be omitted
because of its weak nonlinearity.

2. Discretization of Poisson’s Equation and the
Continuity Equation

In this work the five-point discretization
scheme was employed, which was also preferred
by many workers in their two dimensional
modeling.

One substitutes the differential equation on
each inner point (i, j) (see Fig. 1) through a
difference equation. Fig. 2 shows the basic
geometry for the MOSFET model being used in
SOMOS.

Eq. (25) is an elliptic differential equation,
Care has to be taken only with the discretiza-
tion of the interface (line BE in Fig. 2),

(516)
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Fig. 2. Domain for MOSFET simulation.

because of the discontinuity of the space
charge.

By applying the central differencing
the Poisson’s equation and the continuity
equation were formulated in two -dimensional
finite-difference grid space in a similar way as
that of the original one-dimensional work by
Scharfetter and Gummel /14/.

3. Boundary Conditions

First we discuss the boundary conditions for
Poisson’s equation on the geometrical model
shown in Fig. 2. At the contacts (AB: Source,
CD: Gate, EF: Drain, GH: Bulk) which are
assumed to be ohmic, the potential is kept to



98

the value of the applied bias voltage plus the
built-in potential.

At the vertical boundaries (AH, CB, DE, FG)
electric field perpendicular to the surface has to
vanish.

At the interface(BE), the electric potential
has to satisfy the law of Gauss.

0 0
€ L4 = € L4 . 31)
ox oxide s1 silicon

The boundary conditions of the continuity
equation are simple as was the case for Pois-
son’s equation.

At all contacts (AB: Source, EF: Drain,
GH: Bulk) the carrier density is kept to the
value of the doping concentration. At the
interface(BE), no current component in Yy
direction is allowed. At the vertical bounderies
(AH, FG) the lateral current component has to
vanish.

4. Grid and Initial Solutions

Careful attentions must be given to the
selection of the grid points in order to minimize
the discretization error which has a very strong
influence upon the convergence characteristics.

It is impossible to choose an equidistant
grid, because too many grid points would
require undesirable memory space and com-
putation time.

Because of the above mentioned reasons, a
grid with unequal spacing is used, which will
then be checked in a certain phase of the
solution procedure.

Initial grid generation is based on the doping
concentration and given bias conditions.
Refined grid is generated, automatically, to
satisfy the requirement that the absolute
potential difference between two adjacent grid
points are within the specified range.

Two-dimensional  potential  distribution
which is used as the initial solution is generated
as was done in MINIMOS/3/.

For the simplicity and the easy program-
ming, initial carrier distribution for a given bias
is assumed to be equal to that of thermal
equilibrium.

(517)
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IV. Typical Application Example

In this chapter some typical application
examples will be presented. The appropriate
example as an application of two dimensional
modeling would be the analysis of the influence
of an ion-implantation upon short channel
transistors.

For that purpose, two different transistors I
and II were simulated whose data are declared
in SOMOS input statement table 2.

For the user’s convenience, input statements
and syntax used in MININOS /3/ are retained in
SOMOS except some modifications.

Transistor I and II have identical input
statements but the channel was implanted in
transistor II. Input statement sets are listed in
table 2.

Table 2. Input Statement Sets for SOMOS

*APPLICATION EXAMPLE DEVICE I AND II*

DEVICE CHANNEL=N GATE=NPOLY TOX=
350E-8 W=10E-4 L=2E-4

BIAS UD=3 UG=0 US=0

OUTPUT DC=Y PSI=Y CC=Y MOB=Y

END

The first line is a title, The further syntax is
based upon a keyword-parameter-value struc-
ture and is completely format free.

“DEVICE” key describes the type and
geometry of the MOSFET. ‘“BIAS” key
describes the operating point of the MOSFET.

“OUTPUT” key describes the parameters
required to be written in the output file.

Several values for error control and the
number of iterations are tested. Here, the
system equations are solved by the SOR

method with the condition of max (ldelta
variate) < 1 x 107

The number of Newton’s iteration within
Poisson’s equation is usually between 3 and 6.
It is believed that this number may depend on
the damping scheme. Overall procedure is
stopped when the variation of the electrostatic
potential is less than Vo the thermal voltage.
The doping density distribution are shown
in Fig. 3. Doping data for source and drain are
obtained from PRECISE/5/. SUPREM /6/ was
used for channel implant profile in the transis-
tor. In these figures, the drain contacts are on



Two-~Dimensional Simulation of MOS Transistors Using Nemerical Method

the right-hand side. The effective channel

length is reduced by the lateral diffusion to
about 1.6 um.

Fig. 4. Potential distribution in the transistor IL

Fig. 4 shows the distribution of the electro-
static potential in the transistor. The zero
potential point corresponds to the mid-gap level
in the energy band diagram. In the depletion
region of the reverse biased drain/bulk diode,
the potential falls monotonically, and it is
nearly constant in the highly doped source and
drain region.

Fig. 5 shows the electron concentration
profile, As was expected, the surface concen-
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tration is depressed because of the channel
implantation. Fig. 6 shows the mobility dis-
tribution. In the highly doped source/drain
region, the mobility is very small because of the
impurity and carrier scattering. Under the
source region, the mobility immediately in-
creases to its bulk value, but under the drain
region the mobility reduction due to the strong
field in the reverse biased drain/substrate diode
is observed. The mobility in the channel region
falls off monotonically along the surface. In
the normal direcion, the mobility parallel to
the surface is reduced by the surface scattering.

Fig. 5. The electron distribution in the tran-
sistor II.

V. Conclusion

In this paper, we described a program,
SOMOS, for the two dimensional numerical
simulation of the planar NMOS transistors.

This program includes the SRH recombina-
tion model and the mobility dependences on
thie impurity atom density, carrier concentra-
tion, velocity saturation and the channel
surface state.

The finite difference formulations for the
basic semiconductor equations are explained.
For the solution of the system equations, the
SOR method has been employed.

The main motivation for the development of
this program was to gain physical understanding
of MOS transistor operation and to provide
both designers and technologists with a con-
veniant and accurate MOSFET simulator.
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Fig. 6. Mobility distribution in the transistor II.

It is found that the drain currents that are
calculated from the different points of grid
within the channel region have somewhat
different values and the efforts to obtain I-V
characteristic curves for various drain and gate
bias have failed.

It is expected that another accurate and
efficient simulation would be possible by
adopting such algorithms as “decoupled meth-
od” and SLOR, SIP /15/, ICCG /16/, etc.

References

[1] H.K. Gummel, “A self consistent iterative
scheme for one dimensional steady state
transistor  calculations,” IEEE Trans.
Electron Devices, vol. ED-11, pp. 445-465,
1964.

A. De Mari, “An accurate numerical Steady-
State One-Dimensional Solution of the P-
N Junction,” Solid-State Electron., vol.
11, pp. 33-58, 1968.

S. Selbeherr, A. Schutz, HW. Potzl,
“MINIMOS-A Two-Dimensional MOS
Transistor Analyzer,” IEEE Trans. Elect-
ron Device, vol. ED-27, pp. 1540-1550,
1980.

H.C. Oh, C.M. Kyung, “Numerical Evalu-
tion of Impurity Profile in Silicon,” J.
KIEE, vol. 21, no. 6, pp. 17-26, 1984.

[2]

(3]

[4]

(519)

19854° 9F WYIHELE £ 2% #5458

[5] Y.Y. Yang, H.C. Oh, C.M. Kyung, Charac-
terization of Two-Dimensional Impurity
Profile in Semiconductor Using Direct
Method. Presented at the int’l Electronic
Devices and Materials Symposium, Taiwan,
ROC, Sept., 1984.

C.P. Ho, S.E. Hansen, “SUPREM IIT - A
Program for Integrated Circuit Process
Modeling and Simulation. SEL 83-001
Stanford Electronics Labs, Stanford Uni-
versity, July 1983.

W.V. Van Roosbroeck, “Theory of flow
of electrons and holes in germanium and
other semiconductors,” Bell Syst. Tech.
J., vol. 29, pp. 560-607, 1950.

D. M. Caughey and R.E. Thomas, “Carrier
mobilities in silicon empirically related
to the doping and field,” Proc. IEEE,
vol. 55, pp. 2192-2193, 1967.

W. Anheier and W.L. Engl, Numerical
analysis of gate triggered SCR turn-on
transients, in IEEE IEDM Dig. Tech.
Papers (Washington D.C.), pp. 303A-
3030, 1977.

K. Yamaguchi, “Field-dependent mobility
model for two dimensional numerical
analysis of MOSFET's,” IEEE Trans.
Electron Device, vol. ED-26, pp. 1068-
1074, 1979.

E.M. Buturla, P.E. Cotrell, “Simulation
of  Semiconductor  Transport Using
Coupled and Decoupled Solution Techni-
ques,” Solid-State-Electronics, vol. 23,
pp. 331-334, 1980.

B.W. Brown, B.W. Lindsay, “The Numeri-
cal Solution of Poisson’s Equation for
Two-Dimensional Semiconductor Device,”
Solid-State-Electron, vol. 19, pp. 991-882,
1976.

S. Selberherr, English Translation of Two
Dimensional Modeling of MOS Transistors.
The Original Paper is Ph.D. Dissertation
Thesis, Technical University of Vienna,
Austria.  Translated by Semiconductor
Physics, Inc. 639 Meadow Grove place
Escondido, CA 92027, 1982.

D.L. Scharfetter, H.K. Gummel, “Large-
signal analysis of a silicon read diode
oscillator,” IEEE Trans. Electron Devices,
vol. ED-16, pp. 64-77, 1969.

(6]

(7]

[8]

(9]

[10]

(11}

[12]

[13]

(14]



Two-Dimensional Simulation of MOS Transistors Using Nemerical Method 101

[15] H.L. Stone, “Iterative solution of implicit “An iterative method for linear systems
approximation of multidimensional partial of which the coefficient matrix is a sym-
differential equations,” SIAM, J. NUM. metric M-Matrix,”” Math. of Computation,
Anal., vol. 5, pp. 530-558, 1968. vol. 31, no. 137, pp. 148-162, 1972.

[16] J.A. Meijerink and H.A. Van der Vorst,

(520)



