• Title/Summary/Keyword: Pipelined ADC

Search Result 31, Processing Time 0.017 seconds

Open-Loop Pipeline ADC Design Techniques for High Speed & Low Power Consumption (고속 저전력 동작을 위한 개방형 파이프라인 ADC 설계 기법)

  • Kim Shinhoo;Kim Yunjeong;Youn Jaeyoun;Lim Shin-ll;Kang Sung-Mo;Kim Suki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.104-112
    • /
    • 2005
  • Some design techniques for high speed and low power pipelined 8-bit ADC are described. To perform high-speed operation with relatively low power consumption, open loop architecture is adopted, while closed loop architecture (with MDAC) is used in conventional pipeline ADC. A distributed track and hold amplifier and a cascading structure are also adopted to increase the sampling rate. To reduce the power consumption and the die area, the number of amplifiers in each stage are optimized and reduced with proposed zero-crossing point generation method. At 500-MHz sampling rate, simulation results show that the power consumption is 210mW including digital logic with 1.8V power supply. And the targeted ADC achieves ENOB of about 8-bit with input frequency up to 200-MHz and input range of 1.2Vpp (Differential). The ADC is designed using a $0.18{\mu}m$ 6-Metal 1-Poly CMOS process and occupies an area of $900{\mu}m{\times}500{\mu}m$

A l0b 150 MSample/s 1.8V 123 mW CMOS A/D Converter (l0b 150 MSample/s 1.8V 123 mW CMOS 파이프라인 A/D 변환기)

  • Kim Se-Won;Park Jong-Bum;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • This work describes a l0b 150 MSample/s CMOS pipelined A/D converter (ADC) based on advanced bootsuapping techniques for higher input bandwidth than a sampling rate. The proposed ADC adopts a typical multi-step pipelined architecture, employs the merged-capacitor switching technique which improves sampling rate and resolution reducing by $50\%$ the number of unit capacitors used in the multiplying digital-to-analog converter. On-chip current and voltage references for high-speed driving capability of R & C loads and on-chip decimator circuits for high-speed testability are implemented with on-chip decoupling capacitors. The proposed AU is fabricated in a 0.18 um 1P6M CMOS technology. The measured differential and integral nonlinearities are within $-0.56{\~}+0.69$ LSB and $-1.50{\~}+0.68$ LSB, respectively. The prototype ADC shows the signal-to-noise-and-distortion ratio (SNDR) of 52 dB at 150 MSample/s. The active chip area is 2.2 mm2 (= 1.4 mm ${\times}$ 1.6 mm) and the chip consumes 123 mW at 150 MSample/s.

A 10-bit 20-MHz CMOS A/D converter (10-bit 20-MHz CMOS A/D 변환기)

  • 최희철;안길초;이승훈;강근순;이성호;최명준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.4
    • /
    • pp.152-161
    • /
    • 1996
  • In tis work, a three-stage pipelined A/D converter (ADC) was implemented to obtain 10-bit resolution at a conversion rate of 20 msamples/s for video applications. The ADC consists of three identical stages employing a mid-rise coding technique. The interstage errors such as offsets and clock feedthrough are digitally corrected in digitral logic by one overlapped bit between stages. The proposed ADC is optimized by adopting a unit-capacitor array architecture in the MDAC to improve the differential nonlinearity and the yield. Reduced power dissipation has been achieve dby using low-power latched comparators. The prototype was fabricated in a 0.8$\mu$m p-well CMOS technology. The ADC dissipates 160 mW at a 20 MHz clock rate with a 5 V single supply voltage and occupies a die area of 7 mm$^{2}$(2.7 mm $\times$ 2.6mm) including bonding pads and stand-alone internal bias circuit. The typical differential and integral nonlinarities of the prototype are less than $\pm$ 0.6 LSB and $\pm$ 1 LSB, respectively.

  • PDF

A Merged-Capacitor Switching Technique for Sampling-Rate and Resolution Improvement of CMOS ADCs) (CMOS A/D 변환기의 샘플링 속도 및 해상도 향상을 위한 병합 캐패시터 스위칭 기법)

  • Yu, Sang-Min;Jeon, Yeong-Deuk;Lee, Seung-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.35-41
    • /
    • 2000
  • This paper describes a merged-capacitor switching (MCS) technique to improve the signal Processing speed and resolution of CMOS analog-to-digital converters (ADCs). The proposed MCS technique improves a sampling rate by reducing the number of capacitors used in conventional pipelined ADCs. The ADC capacitor mismatch can be minimized without additional power consumption, die area, and the loss of sampling rate, when the size of each unit capacitor is increased as much as the number of capacitors reduced by the MCS technique. It is verified that the ADC resolution based on the proposed MCS technique is extended further by employing a conventional commutated feedback-capacitor switching (CFCS) technique.

  • PDF

An 8b 200 MHz 0.18 um CMOS ADC with 500 MHz Input Bandwidth (500 MHz의 입력 대역폭을 갖는 8b 200 MHz 0.18 um CMOS A/D 변환기)

  • 조영재;배우진;박희원;김세원;이승훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.312-320
    • /
    • 2003
  • This work describes an 8b 200 MHz 0.18 urn CMOS analog-to-digital converter (ADC) based on a pipelined architecture for flat panel display applications. The proposed ABC employs an improved bootstrapping technique to obtain wider input bandwidth than the sampling tate of 200 MHz. The bootstrapuing technique improves the accuracy of the input sample-and-hold amplifier (SHA) and the fast fourier transform (FFT) analysis of the SHA outputs shows the 7.2 effective number of bits with an input sinusoidal wave frequency of 500 MHz and the sampling clock of 200 MHz at a 1.7 V supply voltage. Merged-capacitor switching (MCS) technique increases the sampling rate of the ADC by reducing the number of capacitors required in conventional ADC's by 50 % and minimizes chip area simultaneously. The simulated ADC in a 0.18 um n-well single-poly quad-metal CMOS technology shows an 8b resolution and a 73 mW power dissipation at a 200 MHz sampling clock and a 1.7 V supply voltage.

An 8b 240 MS/s 1.36 ㎟ 104 mW 0.18 um CMOS ADC for High-Performance Display Applications (고성능 디스플레이 응용을 위한 8b 240 MS/s 1.36 ㎟ 104 mW 0.18 um CMOS ADC)

  • In Kyung-Hoon;Kim Se-Won;Cho Young-Jae;Moon Kyoung-Jun;Jee Yong;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • This work describes an 8b 240 MS/s CMOS ADC as one of embedded core cells for high-performance displays requiring low power and small size at high speed. The proposed ADC uses externally connected pins only for analog inputs, digital outputs, and supplies. The ADC employs (1) a two-step pipelined architecture to optimize power and chip size at the target sampling frequency of 240 MHz, (2) advanced bootstrapping techniques to achieve high signal bandwidth in the input SHA, and (3) RC filter-based on-chip I/V references to improve noise performance with a power-off function added for portable applications. The prototype ADC is implemented in a 0.18 um CMOS and simultaneously integrated in a DVD system with dual-mode inputs. The measured DNL and INL are within 0.49 LSB and 0.69 LSB, respectively. The prototype ADC shows the SFDR of 53 dB for a 10 MHz input sinewave at 240 MS/s while maintaining the SNDR exceeding 38 dB and the SFDR exceeding 50 dB for input frequencies up to the Nyquist frequency at 240 MS/s. The ADC consumes, 104 mW at 240 MS/s and the active die area is 1.36 ㎟.

A3V 10b 33 MHz Low Power CMOS A/D Converter for HDTV Applications (HDTV 응용을 위한 3V 10b 33MHz 저전력 CMOS A/D 변환기)

  • Lee, Kang-Jin;Lee, Seung-Hoon
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.278-284
    • /
    • 1998
  • This paper describes a l0b CMOS A/D converter (ADC) for HDTV applications. The proposed ADC adopts a typical multi-step pipelined architecture. The proposed circuit design techniques are as fo1lows: A selective channel-length adjustment technique for a bias circuit minimizes the mismatch of the bias current due to the short channel effect by supply voltage variations. A power reduction technique for a high-speed two-stage operational amplifier decreases the power consumption of amplifiers with wide bandwidths by turning on and off bias currents in the suggested sequence. A typical capacitor scaling technique optimizes the chip area and power dissipation of the ADC. The proposed ADC is designed and fabricated in s 0.8 um double-poly double-metal n-well CMOS technology. The measured differential and integral nonlinearities of the prototype ADC show less than ${\pm}0.6LSB\;and\;{\pm}2.0LSB$, respectively. The typical ADC power consumption is 119 mW at 3 V with a 40 MHz sampling rate, and 320 mW at 5 V with a 50 MHz sampling rate.

  • PDF

A Design of Pipelined Analog-to-Digital Converter with Multi SHA Structure (Multi SHA 구조의 파이프라인 아날로그-디지털 변환기 설계)

  • Lee, Seung-Woo;Ra, Yoo-Chan;Shin, Hong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.114-121
    • /
    • 2005
  • In this paper, Pipelined A/D converter with multi SHA structure is proposed for high speed operation. The proposed structure incorporates a multi SHA block that consists of multiple SHAs of identical characteristics in parallel to improve the conversion speed. The designed multi SHA is operated by non-overlapping clocks and the sampling speed can be improved by increasing the number of multiplexed SHAs. Pipelined A/D converter, applying the proposed structure, is designed to satisfy requirement of analog front-end of VDSL modem. The measured INL and DNL of designed A/D converter are $0.52LSB{\sim}-0.50LSB\;and\;0.80LSB{\sim}-0.76LSB$, respectively. It satisfies the design specifications for VDSL modems. The simulated SNR is about 66dB which corresponds to a 10.7 bit resolution. The power consumption is 24.32mW.

A Design of ADC with Multi SHA Structure which for High Data Communication (고속 데이터 통신을 위한 다중Multi SHA구조를 갖는 ADC설계)

  • Kim, Sun-Youb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1709-1716
    • /
    • 2007
  • In this paper, ADC with multi SHA structure is proposed for high speed operation. The proposed structure incorporates a multi SHA block that consists of multiple SHAs of identical characteristics in parallel to improve the conversion speed. The designed multi SHA is operated by non-overlapping clocks and the sampling speed can be improved by increasing the number of multiplexed SHAs. Pipelined A/D converter, applying the proposed structure, is designed to satisfy requirement of analog front-end of VDSL modem. The measured INL and DNL of designed A/D converter are $0.52LSB{\sim}-0.50LSB$ and $0.80LSB{\sim}-0.76LSB$, respectively. It satisfies the design specifications for VDSL modems. The simulated SNR is about 66dB which corresponds to a 10.7 bit resolution. The power consumption is 24.32mW.

A Design of Full Flash 8-Bit CMOS A/D Converter (Full Flash 8-Bit CMOS A/D 변환기 설계)

  • Choi, Young-Gyu;Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.126-134
    • /
    • 1990
  • In order to implement high-speed data acquistion system in CMOS VLSI technology, means must be found to overcome the relatively low transconductance and large device mismatch characteristic of MOS device. Because of these device limitations, circuit design approaches tradition-ally used in high-speed bipolar analog-to-digital converter(ADC) are suited to CMOS implementation. Also the design of VLSI CMOS comparator wherein voltage comparision is accomplished by means of a pipelined cascade RSA (Regenerative Sense Amplifier). So, in this paper we designed the A/D converter incorporates the pipelined CMOS comparator.

  • PDF