• Title/Summary/Keyword: PMOS-diode

Search Result 17, Processing Time 0.028 seconds

Design of PMOS-Diode Type eFuse OTP Memory IP (PMOS-다이오드 형태의 eFuse OTP IP 설계)

  • Kim, Young-Hee;Jin, Hongzhou;Ha, Yoon-Gyu;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.64-71
    • /
    • 2020
  • eFuse OTP memory IP is required to trim the analog circuit of the gate driving chip of the power semiconductor device. Conventional NMOS diode-type eFuse OTP memory cells have a small cell size, but require one more deep N-well (DNW) mask. In this paper, we propose a small PMOS-diode type eFuse OTP memory cell without the need for additional processing in the CMOS process. The proposed PMOS-diode type eFuse OTP memory cell is composed of a PMOS transistor formed in the N-WELL and an eFuse link, which is a memory element and uses a pn junction diode parasitic in the PMOS transistor. A core driving circuit for driving the array of PMOS diode-type eFuse memory cells is proposed, and the SPICE simulation results show that the proposed core circuit can be used to sense post-program resistance of 61㏀. The layout sizes of PMOS-diode type eFuse OTP memory cell and 512b eFuse OTP memory IP designed using 0.13㎛ BCD process are 3.475㎛ × 4.21㎛ (= 14.62975㎛2) and 119.315㎛ × 341.95㎛ (= 0.0408mm2), respectively. After testing at the wafer level, it was confirmed that it was normally programmed.

Modeling and HSPICE analysis of the CMOS image sensor pixel with the complementary signal path (상보형 신호경로 방식의 CMOS 이미지센서 픽셀 모델링 및 HSPICE 해석)

  • Kim, Jin-Su;Jung, Jin-Woo;Kang, Myung-Hun;Noh, Ho-Sub;Kim, Jong-Min;Lee, Jae-Woon;Song, Han-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.41-52
    • /
    • 2008
  • In this paper, a circuit analysis of the complementary CMOS active pixel and readout circuit is carried out. Complementary pixel structure which is different from conventional 3TR APS structure is consist of photo diode, reset PMOS, several NMOSs and PMOSs sets for complementary signals. Photo diode is modelled with Medici device program. HSPICE was used to analyze the variation of the signal feature depending on light intensity using $0.5{\mu}M$ standard CMOS process. Simulation results show that the output signal range is from 0.8 V to 4.5 V. This signal range increased 135 % output dynamic range compared to conventional 3TR pixel in the condition of 5 V power supply.

A High-speed Level-shifter Circuit for Display Panel driver (디스플레이 구동을 위한 고속 레벨-쉬프터 회로)

  • Park, Won-ki;Cha, Cheol-ung;Lee, Sung-chul
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.657-658
    • /
    • 2006
  • A Novel level-shifter circuit for Display Panel Driver is presented. A Proposed level-shifter is for the high speed and high-voltage driving capability. In order to achieve this purpose, the proposed level-shifter restricts and separates the Vgs of the output driver's pull-up PMOS and pull-down NMOS with Zener diode. And a speed-up PMOS transistor is introduced to reduce delay. The control signal of speed-up PMOS was designed by bootstrapping method to minimize the gate to source (Vgs) voltage to avoid Vgs breakdown.

  • PDF

Hardware implementation of a CMOS image sensor pixel using complemental signal path (상보형 신호경로 방식의 CMOS 이미지 센서 픽셀의 하드웨어 구현)

  • Jung, Jin-Woo;Kwon, Bo-Min;Kim, Ji-Man;Park, Ju-Hong;Park, Yong-Su;Lee, Je-Won;Song, Han-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.475-484
    • /
    • 2009
  • In this paper, an analysis of the complementary CMOS active pixel and readout circuit is carried out. Complementary pixel structure which is different from conventional 3TR APS structure consists of photo diode, reset PMOS, several NMOSs and PMOSs sets for complementary signals. Proposed CMOS image sensors pixel has been fabricated using 0.5 standard CMOS process. Measured results show that the output signal range is from 0.8 V to 3.8 V. This output signal range increased 125 % compared to conventional 3TR pixel in the condition of 5 V power supply.

OFD(Over Flow Drain) pixel architecture design of the CIS which has wide dynamic range with a CMOS process (넓은 동적 범위를 가지는 CMOS Image Sensors OFD(Over Flow Drain) 픽셀 설계)

  • Kim, Jin-Su;Kwon, Bo-Min;Jung, Jin-Woo;Park, Ju-Hong;Kim, Jong-Min;Lee, Je-Won;Kim, Nam-Tae;Song, Han-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • We propose a new image pixel architecture which has OFD(Over Flow Device) node by improving conventional 3TR pixel structure. Newly designed pixel consists of photo diode which is verified with HSPICE simulation, PMOS reset transistor, several NMOS and several PMOS transistors. Photodiode signals from each PMOS and NMOS are detected by Reset PMOS. These output signals give enough chances to detect wide operation coverage because OFD node has overflow photocurrent. According to various light intensity, we analyzed characteristic of the output voltage with a SPICE tool. Proposed pixel output has specific value which can detect possible from $0.1{\mu}W/cm^2$ to $10W/cm^2$ light intensity. It has wide-dynamic range of 160 dB.

A Study on the Design of a Beta Ray Sensor Reducing Digital Switching Noise (디지털 스위칭 노이즈를 감소시킨 베타선 센서 설계)

  • Kim, Young-Hee;Jin, Hong-Zhou;Cha, Jin-Sol;Hwang, Chang-Yoon;Lee, Dong-Hyeon;Salman, R.M.;Park, Kyung-Hwan;Kim, Jong-Bum;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.403-411
    • /
    • 2020
  • Since the analog circuit of the beta ray sensor circuit for the true random number generator and the power and ground line used in the comparator circuit are shared with each other, the power generated by the digital switching of the comparator circuit and the voltage drop at the ground line was the cause of the decreasein the output signal voltage drop at the analog circuit including CSA (Charge Sensitive Amplifier). Therefore, in this paper, the output signal voltage of the analog circuit including the CSAcircuit is reduced by separating the power and ground line used in the comparator circuit, which is the source of digital switching noise, from the power and ground line of the analog circuit. In addition, in the voltage-to-voltage converter circuit that converts VREF (=1.195V) voltage to VREF_VCOM and VREF_VTHR voltage, there was a problem that the VREF_VCOM and VREF_VTHR voltages decrease because the driving current flowing through each current mirror varies due to channel length modulation effect at a high voltage VDD of 5.5V when the drain voltage of the PMOS current mirror is different when driving the IREF through the PMOS current mirror. Therefore, in this paper, since the PMOS diode is added to the PMOS current mirror of the voltage-to-voltage converter circuit, the voltages of VREF_VCOM and VREF_VTHR do not go down at a high voltage of 5.5V.

Design and Fabrication of a Seven Segment Decoder/Driver with PMOS Technology (PMOS 집적회로 제작기법을 사용한 Seven Segment Decoder/Driver의 설계와 제작)

  • 김충기;박형규
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.3
    • /
    • pp.11-17
    • /
    • 1978
  • A medium scale integrated circuit, BCD to seven segment decoder/driver is designed and fabricated by employing P-channel metal-oxide-semiconductor technology. The device configuration is specifically designed for a common cathode seven segment LED display unit. The decoder logic is composed of two serially connected read-only-memory matrices and the LED drivers are implemented with wide channel FET's. The fabricated integrated circuit performed successfully with a supply voltage between -7 Volt and -26 Volt and the non-uniformity of the LED segment current is about 10%.

  • PDF

An Efficient High Voltage Level Shifter using Coupling Capacitor for a High Side Buck Converter

  • Seong, Kwang-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.125-134
    • /
    • 2016
  • We propose an efficient high voltage level shifter for a high side Buck converter driving a light-emitting diode (LED) lamp. The proposed circuit is comprised of a low voltage pulse width modulation (PWM) signal driver, a coupling capacitor, a resistor, and a diode. The proposed method uses a property of a PWM signal. The property is that the signal repeatedly transits between a low and high level at a certain frequency. A low voltage PWM signal is boosted to a high voltage PWM signal through a coupling capacitor using the property of the PWM signal, and the boosted high voltage PWM signal drives a p-channel metal oxide semiconductor (PMOS) transistor on the high side Buck converter. Experimental results show that the proposed level shifter boosts a low voltage (0 to 20 V) PWM signal at 125 kHz to a high voltage (370 to 380 V) PWM signal with a duty ratio of up to 0.9941.

Design of a S-Band Transfer-Type SP4T Using PIN Diode (PIN 다이오드를 이용한 S-대역 고출력 경로선택형 SP4T 설계)

  • Yeom, Kyung-Whan;Im, Pyung-Soon;Lee, Dong-Hyun;Park, Jong-Seol;Kim, Bo-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.834-843
    • /
    • 2016
  • In this paper, the design of a PIN diode S-band transfer-type SP4T including its driver circuit is presented. Each path of the SP4T is composed of the cascade connection of series-shunt PIN diodes to improve the isolation performance. The SP4T is implemented using chip type PIN diodes and a 20 mil AIN substrate fabricated using thin film technology. The driver circuit for the SP4T is designed using a multiplexer and four NMOS-PMOS push-pull pair. From on-wafer measurement, the fabriacted SP4T shows a maximum insertion loss of 1.1 dB and a minimum isolation of 41 dB. The time performance of the driver circuit is evaluated using the packaged PIN diodes with the identical PIN diode chip, and the transition time for on-off and off-on are below 100 nsec. For an input power level of 150 W, the measured insertion loss and isolation are close to those of the on-wafer measurement taking into consideration of the coaxial package mismatch and insertion loss.

A High Efficiency Active Rectifier for 6.78MHz Wireless Power Transfer Receiver with Bootstrapping Technique and All Digital Delay-Locked Loop

  • Nga, Truong Thi Kim;Park, Hyung-Gu;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.410-415
    • /
    • 2014
  • This paper presents a new rectifier with a bootstrapping technique to reduce the effective drop voltage. An all-digital delay locked loop (ADDLL) circuit was also applied to prevent the reverse leakage current. The proposed rectifier uses NMOS diode connected instead of PMOS to reduce the design size and improve the frequency respond. All the sub-circuits of ADDLL were designed with low power consumption to reduce the total power of the rectifier. The rectifier was implemented in CMOS $0.35{\mu}m$ technology. The peak power conversion efficiency was 76 % at an input frequency of 6.78MHz and a power level of 5W.