• Title/Summary/Keyword: PMIC

Search Result 48, Processing Time 0.024 seconds

Design of Multi-time Programmable Memory for PMICs

  • Kim, Yoon-Kyu;Kim, Min-Sung;Park, Heon;Ha, Man-Yeong;Lee, Jung-Hwan;Ha, Pan-Bong;Kim, Young-Hee
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1188-1198
    • /
    • 2015
  • In this paper, a multi-time programmable (MTP) cell based on a $0.18{\mu}m$ bipolar-CMOS-DMOS backbone process that can be written into by using dual pumping voltages - VPP (boosted voltage) and VNN (negative voltage) - is used to design MTP memories without high voltage devices. The used MTP cell consists of a control gate (CG) capacitor, a TG_SENSE transistor, and a select transistor. To reduce the MTP cell size, the tunnel gate (TG) oxide and sense transistor are merged into a single TG_SENSE transistor; only two p-wells are used - one for the TG_SENSE and sense transistors and the other for the CG capacitor; moreover, only one deep n-well is used for the 256-bit MTP cell array. In addition, a three-stage voltage level translator, a VNN charge pump, and a VNN precharge circuit are newly proposed to secure the reliability of 5 V devices. Also, a dual memory structure, which is separated into a designer memory area of $1row{\times}64columns$ and a user memory area of $3rows{\times}64columns$, is newly proposed in this paper.

A High Efficiency, High Power-Density GaN-based Triple-Output 48V Buck Converter Design (GaN MOSFET을 이용한 고밀도, 고효율 48V 버스용 3-출력 Buck Converter 설계)

  • Lee, Sangmin;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.412-419
    • /
    • 2020
  • In this study, a 70 W buck converter using GaN metal-oxide-semiconductor field-effect transistor (MOSFET) is developed. This converter exhibits over 97 % efficiency, high power density, and 48 V-to-12 V/1.2 V/1 V (triple output). Three gate drivers and six GaN MOSFETs are placed in a 1 ㎠ area to enhance power density and heat dissipation capacity. The theoretical switching and conduction losses of the GaN MOSFETs are calculated. Inductances, capacitances, and resistances for the output filters of the three buck converters are determined to achieve the desired current, voltage ripples, and efficiency. An equivalent circuit model for the thermal analysis of the proposed triple-output buck converter is presented. The junction temperatures of the GaN MOSFETs are estimated using the thermal model. Circuit operation and temperature analysis are evaluated using a circuit simulation tool and the finite element analysis results. An experimental test bed is built to evaluate the proposed design. The estimated switch and heat sink temperatures coincide well with the measured results. The designed buck converter has 130 W/in3 power density and 97.6 % efficiency.

Programmable Smart Charger Compatible to Various Load Conditions (다양한 부하조건에 호환 가능한 프로그래머블 스마트 충전기)

  • Jo, Kang-Ta;Keum, Moon-Hwan;Han, Sang-Kyoo;Oh, Dong-Sung;Sakong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.357-363
    • /
    • 2014
  • A programmable smart charger compatible to various load conditions is proposed in this paper. Since the proposed smart charger is compatible to various mobile devices having different rated voltage and power, it is convenient for carrying and easy to standardize many kinds of battery chargers. Moreover, since it uses the input impedance and built-in PMIC (Power management IC) of the load system to recognize the connection state and specifications of load system, hardware changes of load system is not only hardly necessary but it also features no addition communication cable and easy implementation. To confirm the validity of the proposed charger, the theoretical analysis and experiment results from a prototype compatible to three load conditions 5V/1A, 5V/2A and 12V/1A are provided.

Design of a 64b Multi-Time Programmable Memory IP for PMICs (PMIC용 저면적 64비트 MTP IP 설계)

  • Cui, Dayong;Jin, Rijin;Ha, Pang-Bong;Kim, Young-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 2016
  • In this paper, a 64b small-area MTP memory IP is designed. A VPPL (=VPP/3) regulator and a VNN (=VNN/3) charge pump are removed since the inhibit voltages of an MTP memory cell are all 0V instead of the conventional voltages of VPP/3 and VNN/3. Also, a VPP charge pump is removed since the VPP program voltage is supplied from an external pad. Furthermore, a VNN charge pump is designed to provide its voltage of -VPP as a one-stage negative charge pump using the VPP voltage. The layout size of the designed 64b MTP memory IP with MagnaChip's $0.18{\mu}m$ BCD process is $377.585{\mu}m{\times}328.265{\mu}m$ (=0.124mm2). Its DC-DC converter related layout size is 76.4 percent smaller than its conventional counterpart.

Design of High-Reliability Differential Paired eFuse OTP Memory for Power ICs (Power IC용 고신뢰성 Differential Paired eFuse OTP 메모리 설계)

  • Park, Young-Bae;Jin, Li-Yan;Choi, In-Hwa;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.405-413
    • /
    • 2013
  • In this paper, a high-reliability differential paired 24-bit eFuse OTP memory with program-verify-read mode for PMICs is designed. In the proposed program-verify-read mode, the eFuse OTP memory can do a sensing margin test with a variable pull-up load in consideration of programmed eFuse resistance variation and can output a comparison result through a PFb (pass fail bar) pin by comparing a programmed datum with its read one. It is verified by simulation results that the sensing resistance is lower with $4k{\Omega}$ in case of the designed differential paired eFuse OTP memory than $50k{\Omega}$ in case of its dual-port eFuse OTP memory.

Deign of Small-Area Dual-Port eFuse OTP Memory IP for Power ICs (PMIC용 저면적 Dual Port eFuse OTP 메모리 IP 설계)

  • Park, Heon;Lee, Seung-Hoon;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.310-318
    • /
    • 2015
  • In this paper, dual-port eFuse OTP (one-time programmable) memory cells with smaller cell sizes are used, a single VREF (reference voltage) is used in the designed eFuse OTP IP (intellectual property), and a BL (bit-line) sensing circuit using a S/A (sense amplifier) based D F/F is proposed. With this proposed sensing technique, the read current can be reduced to 3.887mA from 6.399mA. In addition, the sensing resistances of a programmed eFuse cell in the program-verify-read and read mode are also reduced to $9k{\Omega}$ and $5k{\Omega}$ due to the analog sensing. The layout size of the designed 32-bit eFuse OTP memory is $187.845{\mu}m{\times}113.180{\mu}m$ ($=0.0213{\mu}m2$), which is confirmed to be a small-area implementation.

A 9-b 2MS/s Cyclic Folding ADC for Battery Management Systems (배터리 관리 시스템을 위한 9-b 2MS/s 사이클릭 폴딩 ADC)

  • Kwon, Min-A;Kim, Dae-Yun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • A 9b MS/s CMOS cyclic folding A/D converter (ADC) for intelligent battery sensor and battery management systems is proposed. The proposed ADC structure is based on a cyclic architecture to reduce chip area and power consumption. To obtain a high speed ADC performance, further, we use a folding-interpolating structure. The prototype ADC implemented with a 0.35um 2P4M n-well CMOS process shows a measured INL and DNL of maximum 1.5LSB and 1.0LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 48dB and 60dB, respectively, and the power consumption is about 110mW at 2MS/s and 3.3V. The occupied active die area is $10mm^2$.

Design of High-Reliability eFuse OTP Memory for PMICs (PMIC용 고신뢰성 eFuse OTP 메모리 설계)

  • Yang, Huiling;Choi, In-Wha;Jang, Ji-Hye;Jin, Liyan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1455-1462
    • /
    • 2012
  • In this paper, a BCD process based high-reliability 24-bit dual-port eFuse OTP Memory for PMICs is designed. We propose a comparison circuit at program-verify-read mode to test that the program datum is correct by using a dynamic pseudo NMOS logic circuit. The comparison result of the program datum with its read datum is outputted to PFb (pass fail bar) pin. Thus, the normal operation of the designed OTP memory can be verified easily by checking the PFb pin. Also we propose a sensing margin test circuit with a variable pull-up load out of consideration for resistance variations of programmed eFuse at program-verify-read mode. We design a 24-bit eFuse OTP memory which uses Magnachip's $0.35{\mu}m$ BCD process, and the layout size is $289.9{\mu}m{\times}163.65{\mu}m$ ($=0.0475mm^2$).

Design of a 32-Bit eFuse OTP Memory for PMICs (PMIC용 32bit eFuse OTP 설계)

  • Kim, Min-Sung;Yoon, Keon-Soo;Jang, Ji-Hye;Jin, Liyan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2209-2216
    • /
    • 2011
  • In this paper, we design a 32-bit eFuse OTP memory for PMICs using MagnaChip's $0.18{\mu}m$ process. We solve a problem of an electrical shortage between an eFuse link and the VSS of a p-substrate in programming by placing an n-well under the eFuse link. Also, we propose a WL driver circuit which activates the RWL (read word-line) or WWL (write word-line) of a dual-port eFuse OTP memory cell selectively when a decoded WERP (WL enable for read or program) signal is inputted to the eFuse OTP memory directly. Furthermore, we reduce the layout area of the control circuit by removing a delay chain in the BL precharging circuit. We'can obtain an yield of 100% at a program voltage of 5.5V on 94 manufactured sample dies when measured with memory tester equipment.

A Design of Three Switch Buck-Boost Converter (3개의 스위치를 이용한 벅-부스트 컨버터 설계)

  • Koo, Yong-Seo;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.82-89
    • /
    • 2010
  • In this paper, a buck-boost converter using three DTMOS(Dynamic Threshold Voltage MOSFET) switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. DTMOS with low on-resistance is designed to decrease conduction loss. The threshold voltage of DTMOS drops as the gate voltage increases, resulting in a much higher current handling capability than standard MOSFET. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.2MHz oscillation frequency, and maximum efficiency 90%. Moreover, the LDO(low drop-out) is designed to increase the converting efficiency at the standby mode below 1mA.