• Title/Summary/Keyword: PLL

Search Result 952, Processing Time 0.026 seconds

A Low Noise Phase Locked Loop with Cain-boosting Charge Pump (Cain-boosting 전하펌프를 이용한 저잡음 위상고정루프)

  • Choi Young-Shig;Han Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.301-306
    • /
    • 2005
  • In this paper, a gain-boosting charge pump(CP) and a latch type voltage controlled oscillato.(VCO) with voltage controlled resistor(VCR) were proposed. The gain-boosting CP achieves good .current matching of less than 11$mu$V voltage difference between 43$mu$V and 32$mu$V in its output range from 0.8V to 2.3V. The VCO with VCR shows good linear characteristics over the range from 1V to 3V. The fabricated VCO exhibits -108dBc/Hz phase noise at a 100kHz and is comparable to that of the integrated LC-tank oscillator. The phase locked loop(PLL) with new circuits was simulated in a 0.35$mu$m CMOS process and showed 150$mu$s locking time.

The Acquisition of the PN Code in the DS/CDMA System Considering Phase Error and Rake Receiver (위상 오류와 레이크 수신기를 고려한 DS/CDMA 시스템의 PN 부호 획득)

  • 김원섭;장문기;박진수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.527-534
    • /
    • 2002
  • In this paper, efficiency in the acquisition of the PN code of the DS/CDMA system was analyzed by using the Nakagami-m probability density function that can model diverse fading channels. The system considers the fading environment that inevitably exists in the mobile communications channel environment. To analyze the efficiency of the system, the equations related to detection probability PD and false alarm probability PFA required for the acquisition of the PN code were induced by using the Nakagami-m probability density function. They were verified through simulation. For the DS/CDMA system an adaptive serial search technique was applied to acquire the PN code. To correct phase error, the equations related to detection probability PD and false alarm probability PFA that influence the time to acquire codes were induced after adding the PLL to each branch of the Rake Receiver. By using an induced equation, detection probability PD and false alarm probability PFA were verified through simulation.

Design of Dual loop PLL with low noise characteristic (낮은 잡음 특성을 가지기 위해 이중 루프의 구조를 가지는 위상고정루프 구현)

  • Choi, Young-Shig;Ahn, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.819-825
    • /
    • 2016
  • In this paper, a phase locked loop structure with parallel dual loop which have a different bandwidth has been proposed. The bandwidths depending on transfer functions are obtained through dual loops. Two different bandwidths of each loop are used to suppress noise on the operating frequency range. The proposed phase locked loop has two different voltage controlled oscillator gains to control two different wide and narrow loop filters. Furthermore, it has the locking status indicator to achieve an accurate locking condition. The phase margin of $58.2^{\circ}$ for wide loop and $49.4^{\circ}$ for narrow loop is designed for stable operation and the phase margin of $45^{\circ}$ is maintained during both loops work together. It has been designed with a 1.8V 0.18um complementary metal oxide semiconductor (CMOS) process. The simulation results show that the proposed phase locked loop works stably and generates a target frequency.

A 14-band MB-OFDM UWB CMOS LO Generator (CMOS 공정을 이용한 14개 LO 신호를 발생시키는 MB-OFDM UWB용 LO 생성 회로 블록 설계)

  • Seo, Yong-Ho;Shin, Sang-Woon;Kim, Chang-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.65-71
    • /
    • 2010
  • This paper presents a 14-band LO generator architecture for MB-OFDM UWB systems using 3.1 GHz~10.6 GHz frequency band. The proposed LO generator architecture has been consisted of only one PLL and the fewest nonlinear components to generate 14 LO signals with high purity while consuming low dc power consumption. In addition, major spurious generated from the LO generator have been located in the out of UWB band. The proposed LO generator has been implemented in a $0.13-{\mu}m$ CMOS technology and consumes a dc power consumption of 93~103 mW from a 1.5 V supply. The simulation results show an in-band spurious suppression ratio of more than 41 dBc and a band-switching time of below 3 nsec.

Implementation of Ku-band Low Noise Block for Global Multi-Band Digital Satellite Broadcasting (글로벌형 다중대역 디지털 위성방송용 Ku-대역 LNB 개발)

  • Kim, Sun Hyo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In this paper, a Multi-Band Ku-band down converter was designed for reception of multi-band digital satellite broadcasting. The Multi-band low-nose down converter was designed to form four local oscillator frequencies (9.75, 10, 10.75 and 11.3GHz) representing a low phase noise due to VCO-PLL with respect to input signals of 10.7 to 12.75GHz and 3-stage low noise amplifier circuit by broadband noise matching, and to select an one band of intermediate frequency (IF) channels by digital control. The developed low-noise downconverter exhibited the full conversion gain of 64dB, and the noise figure of low-noise amplifier was 0.7dB, the P1dB of output signal 15dBm, and the phase noise -73dBc@100Hz at the band 1 carrier frequency of 9.75GHz. The low noise block downconverter (LNB) for receiving four-band digital satellite broadcasting designed in this paper can be used for satellite broadcasting of vessels navigating international waters.

Design of 250-Mbps 10-Channel CMOS Optical Receiver Away for Parallel Optical Interconnection (병렬 광 신호 전송을 위한 250-Mbps 10-채널 CMOS 광 수신기 어레이의 설계)

  • Kim, Gwang-O;Choe, Jeong-Yeol;No, Seong-Won;Im, Jin-Eop;Choe, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.25-34
    • /
    • 2000
  • This paper describes design of a 250-Mbps 10-channel optical receiver array for parallel optical interconnection with the general-purpose CMOS technology The optical receiver is one of the most important building blocks to determine performance of the parallel optical interconnection system. The chip in CMOS technology makes it possible to implement the cost-effective system also. Each data channel consists of analog front-end including the integrated photo-detector and amplifier chain, digital block with D-FF and off-chip driver. In addition, the chip includes PLL (Phase-Lock Loop) for synchronous data recovery. The chip was fabricated in a 0.65-${\mu}{\textrm}{m}$ 2-poly, 2-metal CMOS technology. Power dissipation of each channel is 330㎽ for $\pm$2.5V supply.

  • PDF

A Receiver for Dual-Channel CIS Interfaces (이중 채널 CIS 인터페이스를 위한 수신기 설계)

  • Shin, Hoon;Kim, Sang-Hoon;Kwon, Kee-Won;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.87-95
    • /
    • 2014
  • This paper describes a dual channel receiver design for CIS interfaces. Each channel includes CTLE(Continuous Time Linear Equalizer), sampler, deserializer and clocking circuit. The clocking circuit is composed of PLL, PI and CDR. Fast lock acquisition time, short latency and better jitter tolerance are achieved by adding OSPD(Over Sampling Phase Detector) and FSM(Finite State Machine) to PI-based CDR. The CTLE removes ISI caused by channel with -6 dB attenuation and the lock acquisition time of the CDR is below 1 baud period in frequency offset under 8000ppm. The voltage margin is 368 mV and the timing margin is 0.93 UI in eye diagram using 65 nm CMOS technology.

Performance of Heterodyne/Coherent Optical BFSK Receiver (헤테로다인/코히어런트 광 BFSK 수신기의 성능평가)

  • Lee, Kyu-Song;Park, Sang-Young;Lim, Ho-Geun;Kim, Chang-Min;Hong, Woan-Hue
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.154-160
    • /
    • 1990
  • System modeling for Heterodyne/Coherent Optical BFSK receiver is described and its receiver performance is evaluated. Receiver performance is deteriorated due to both shot noise and laser phase nois. Therefore, to minimize these noise impacts PLL loop natural frequency is selected optimally. For different power penalty due to phase error, required phase error variance to achieve $BER=10^{-9}$, nomalized loop power, and laser linewidth/bit rate(${\Delta\nu}s/Rb$) are derived. For 0.5dB power penalty, phase error variance=0.035(${rad^2}$), photon numbers=20.0, nomalized loop power = $3.8{\times}10^{-3}$(electron/s per herz), and ${\Delta\nu}s/Rb=5.24{\times}10^{-3}$ are obtained.

  • PDF

Phase Noise Compensation in OFDM Communication System by STFBC Method (OFDM 통신 시스템에서 STFBC 기법을 이용한 위상잡음 보상)

  • Li Yingshan;Ryu Heung-Gyoon;Jeong YoungHo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1043-1049
    • /
    • 2005
  • In OFDM system suitable for high capacity high speed broadband transmission, ICI caused by phase noise degrades system performance seriously by destroying the orthogonality among subcarriers. In this paper, a new STFBC method combining ICI self cancellation scheme and antenna, time, frequency diversity is studied to reduce ICI effectively. CPE and ICI are analyzed by the phase noise linear approximation method in the proposed STFBC OFDM system. CIR, PICR and BER are discussed to compare the system performance degraded by phase noise of PLL. As results, STFBC method significantly reduces ICI. Furthermore, the SCI that usually happens in the traditional STBC, SFBC diversity coding method can be easily avoided.

Multi-channel 5Gb/s/ch SERDES with Emphasis on Integrated Novel Clocking Strategies

  • Zhang, Changchun;Li, Ming;Wang, Zhigong;Yin, Kuiying;Deng, Qing;Guo, Yufeng;Cao, Zhengjun;Liu, Leilei
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.303-317
    • /
    • 2013
  • Two novel clocking strategies for a high-speed multi-channel serializer-deserializer (SERDES) are proposed in this paper. Both of the clocking strategies are based on groups, which facilitate flexibility and expansibility of the SERDES. One clocking strategy is applicable to moderate parallel I/O cases, such as high density, short distance, consistent media, high temperature variation, which is used for the serializer array. Each group within the strategy consists of a full-rate phase-locked loop (PLL), a full-rate delay-locked loop (DLL), and two fixed phase alignment (FPA) techniques. The other is applicable to more awful I/O cases such as higher speed, longer distance, inconsistent media, serious crosstalk, which is used for the deserializer array. Each group within the strategy is composed of a PLL and two DLLs. Moreover, a half-rate version is chosen to realize the desired function of 1:2 deserializer. Based on the proposed clocking strategies, two representative ICs for each group of SERDES are designed and fabricated in a standard $0.18{\mu}m$ CMOS technology. Measurement results indicate that the two SERDES ICs can work properly accompanied with their corresponding clocking strategies.