Design of 250-Mbps 10-Channel CMOS Optical Receiver Away for Parallel Optical Interconnection

병렬 광 신호 전송을 위한 250-Mbps 10-채널 CMOS 광 수신기 어레이의 설계

  • Kim, Gwang-O (Dept.of Electronics Electric Engineering, University of Seoul) ;
  • Choe, Jeong-Yeol (Dept.of Electronics Electric Engineering, University of Seoul) ;
  • No, Seong-Won (Dept.of Electronics Electric Engineering, University of Seoul) ;
  • Im, Jin-Eop (Dept.of Electronics Electric Engineering, University of Seoul) ;
  • Choe, Jung-Ho (Dept.of Electronics Electric Engineering, University of Seoul)
  • 김광오 (서울 시립대학교 전자전기공학부) ;
  • 최정열 (서울 시립대학교 전자전기공학부) ;
  • 노성원 (서울 시립대학교 전자전기공학부) ;
  • 임진업 (서울 시립대학교 전자전기공학부) ;
  • 최중호 (서울 시립대학교 전자전기공학부)
  • Published : 2000.11.01

Abstract

This paper describes design of a 250-Mbps 10-channel optical receiver array for parallel optical interconnection with the general-purpose CMOS technology The optical receiver is one of the most important building blocks to determine performance of the parallel optical interconnection system. The chip in CMOS technology makes it possible to implement the cost-effective system also. Each data channel consists of analog front-end including the integrated photo-detector and amplifier chain, digital block with D-FF and off-chip driver. In addition, the chip includes PLL (Phase-Lock Loop) for synchronous data recovery. The chip was fabricated in a 0.65-${\mu}{\textrm}{m}$ 2-poly, 2-metal CMOS technology. Power dissipation of each channel is 330㎽ for $\pm$2.5V supply.

본 논문에서 범용의 CMOS 트랜지스터 공정을 사용하여 250-Mbps 10-채널 CMOS 광 수신기 어레이칩을 설계하였다. 이러한 광 수신기 어레이는 병렬 광 신호 전송 시스템의 성능을 결정하는 가장 중요한 블록이며 이를 CMOS 트랜지스터로 설계함으로써 낮은 단가의 시스템의 구현을 가능하게 하였다. 각 데이터 채널은 집적화 된 광 검출 소자 및 여러 단의 증폭기로 구성된 아날로그 프런트-엔드, D-FF (D-flip flop)과 칩 외부 구동기로 구성된 디지털 블록으로 구성되어 있다. 전체 칩은 광 수신기 어레이와 데이터의 동기식 복원을 위해 PLL (Phase-Lock Loop) 회로로 구성 되어있다. 설계한 광 수신기 어레이 칩은 0.65-㎛ 2-poly, 2-metal CMOS 공정을 사용하여 제작하였으며, 각 채널은 ±2.5V의 전원 전압에 대하여 330㎽의 소비 전력을 보였다.

Keywords

References

  1. C. Lin (edited), Optoelectronic Thchnology and Lightwave Communication Systems, Van Norstrand Reinhold, New York, NY, 1989
  2. J. W. Goodman, F. J. Leonberger, S. Y Kung, R A Athale, 'Optical interconnections for VLSI systems,' Proc. IEEE, Vol. 72, pp. 850-859, 1984
  3. D. C. Wunsch, T. P. Caudell, C. D. Capps, R. J. Marks, R. A. Falk, 'An optoelectronic implementation of the adaptive resonance neural network,' IEEE Tran. Neural Networks, Vol. 4, No.4, pp. 673-684, July 1993 https://doi.org/10.1109/72.238321
  4. C.-S. U, H. S. Stone, Y. Kwark, C. M. Olsen, 'Fully differential optical interconnections for high-speed digital systems,' IEEE Trans. VLSI Systems, Vol. 1, No.2, pp. 151-163, June 1993 https://doi.org/10.1109/92.238421
  5. R. A. Nordin, W. R. Holland and M. A. Shahid, 'Advanced optical interconnection technology in switching equipment,' IEEE/OSA Jour. Lightwave Technology, Vol. 13, No. 6, pp. 987-994, June 1995 https://doi.org/10.1109/50.390216
  6. Y.-M. Wong et al., 'Technology development of a high-density 32-channel 16 Gb/s optical data link for optical interconnection applications for the Optoelectronic Technology Consortium (OETC),' IEEE/OSA Jour. Lighwave Technology, Vol. 13, No.6, pp. 995-1016, June 1995 https://doi.org/10.1109/50.390217
  7. J. F. Ewen, K. P. Jackson, R. J. S. Bates, and E. B. Flint, 'GaAs fiber-optic modules for optical data processing networks,' IEEE/OSA Jour. Lightwave Technology, Vol. 9, No. 12, pp. 1755-1763, Dec. 1991 https://doi.org/10.1109/50.108721
  8. M. Soda, T. Suzaki, T. Morikawa, H. Tezuka, C. Ogawa, S. Fujita, H. Tekemura, and T. Tashiro, 'A Si bipolar chip set for 10 GB/s optical receiver,' Tech Digest IEEE Inter. Solid-State Circuits Corference, pp. 100-101, San Francisco, CA, Feb. 1992 https://doi.org/10.1109/ISSCC.1992.200431
  9. P. J. Lim, A. Y. C. Tzeng, H. L. Chuang, and S. A. St. Onge, 'A 3.3-V monolithic silicon photodetector/CMOS preamplifier for 531 Mb/s optical data link applications,' Tech Digest IEEE Inter. Solid-State Circuits Corference, pp. 96-97, San Francisco, CA, Feb. 1993 https://doi.org/10.1109/ISSCC.1993.280069
  10. N. Ishihara, et al., '3.3V 50Mb/s CMOS transceiver for optical burst-mode communications,' Tech Digest IEEE Inter. Solid-State Circuits ?Conference, pp. 54-55, San Francisco, CA, Feb. 1997 https://doi.org/10.1109/ISSCC.1997.585372
  11. J. Yang, J. Choi, D. M. Kuchta, K. G. Stawiasz, P. Pepeljugoski, and H. A. Ainspan, 'A 3.3-V, 500-Mb/s/ch parallel optical receiver in 1.2-um GaAs technology,' IEEE Jour. Solid-State Circuits, Vol. 33, No. 12, pp. 2197-2204, Dec. 1998 https://doi.org/10.1109/4.735704
  12. D. A. Neaman, Semiconductor Physics & Devices - Basic Principles (2nd Ed), McGraw- Hill, Inc., 1997
  13. N. Ishihara, and Y. Akazawa, 'A monolithic 156 Mb/s clock and data recovery PLL circuit using the sample-and-hold technique,' IEEE Jour. Solid-State Grants, Vol. 29, pp. 1566-1571, Dec. 1994 https://doi.org/10.1109/4.340432