• Title/Summary/Keyword: Noetherian

Search Result 201, Processing Time 0.03 seconds

COPURE PROJECTIVE MODULES OVER FGV-DOMAINS AND GORENSTEIN PRÜFER DOMAINS

  • Shiqi Xing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.971-983
    • /
    • 2023
  • In this paper, we prove that a domain R is an FGV-domain if every finitely generated torsion-free R-module is strongly copure projective, and a coherent domain is an FGV-domain if and only if every finitely generated torsion-free R-module is strongly copure projective. To do this, we characterize G-Prüfer domains by G-flat modules, and we prove that a domain is G-Prüfer if and only if every submodule of a projective module is G-flat. Also, we study the D + M construction of G-Prüfer domains. It is seen that there exists a non-integrally closed G-Prüfer domain that is neither Noetherian nor divisorial.

THE DIMENSION GRAPH FOR MODULES OVER COMMUTATIVE RINGS

  • Shiroyeh Payrovi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.733-740
    • /
    • 2023
  • Let R be a commutative ring and M be an R-module. The dimension graph of M, denoted by DG(M), is a simple undirected graph whose vertex set is Z(M) ⧵ Ann(M) and two distinct vertices x and y are adjacent if and only if dim M/(x, y)M = min{dim M/xM, dim M/yM}. It is shown that DG(M) is a disconnected graph if and only if (i) Ass(M) = {𝖕, 𝖖}, Z(M) = 𝖕 ∪ 𝖖 and Ann(M) = 𝖕 ∩ 𝖖. (ii) dim M = dim R/𝖕 = dim R/𝖖. (iii) dim M/xM = dim M for all x ∈ Z(M) ⧵ Ann(M). Furthermore, it is shown that diam(DG(M)) ≤ 2 and gr(DG(M)) = 3, whenever M is Noetherian with |Z(M) ⧵ Ann(M)| ≥ 3 and DG(M) is a connected graph.

ON NONNIL-SFT RINGS

  • Ali Benhissi;Abdelamir Dabbabi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.663-677
    • /
    • 2023
  • The purpose of this paper is to introduce a new class of rings containing the class of SFT-rings and contained in the class of rings with Noetherian prime spectrum. Let A be a commutative ring with unit and I be an ideal of A. We say that I is SFT if there exist an integer k ≥ 1 and a finitely generated ideal F ⊆ I of A such that xk ∈ F for every x ∈ I. The ring A is said to be nonnil-SFT, if each nonnil-ideal (i.e., not contained in the nilradical of A) is SFT. We investigate the nonnil-SFT variant of some well known theorems on SFT-rings. Also we study the transfer of this property to Nagata's idealization and the amalgamation algebra along an ideal. Many examples are given. In fact, using the amalgamation construction, we give an infinite family of nonnil-SFT rings which are not SFT.

MAXIMAL IDEALS IN POLYNOMIAL RINGS

  • Cho, Young-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.117-119
    • /
    • 1985
  • Let R be a commutative noetherian ring with 1.neq.0, denoting by .nu.(I) the cardinality of a minimal basis of the ideal I. Let A be a polynomial ring in n>0 variables with coefficients in R, and let M be a maximal ideal of A. Generally it is shown that .nu.(M $A_{M}$).leq..nu.(M).leq..nu.(M $A_{M}$)+1. It is well known that the lower bound is not always satisfied, and the most classical examples occur in nonfactional Dedekind domains. But in many cases, (e.g., A is a polynomial ring whose coefficient ring is a field) the lower bound is attained. In [2] and [3], the conditions when the lower bound is satisfied is investigated. Especially in [3], it is shown that .nu.(M)=.nu.(M $A_{M}$) if M.cap.R=p is a maximal ideal or $A_{M}$ (equivalently $R_{p}$) is not regular or n>1. Hence the problem of determining whether .nu.(M)=.nu.(M $A_{M}$) can be studied when p is not maximal, $A_{M}$ is regular and n=1. The purpose of this note is to provide some conditions in which the lower bound is satisfied, when n=1 and R is a regular local ring (hence $A_{M}$ is regular)./ is regular).

  • PDF

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

THE TOTAL GRAPH OF NON-ZERO ANNIHILATING IDEALS OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.379-395
    • /
    • 2018
  • Assume that R is a commutative ring with non-zero identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists a non-zero element $a{\in}R$ such that Ia = 0. S. Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by ${\Omega}(R)$, as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R, and two distinct vertices I and J are adjacent if I + J is an annihilating ideal. In this paper, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[x])$. Also, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[[x]])$, whenever R is a Noetherian ring. In addition, we investigate the relations between the diameters of this graph and the zero-divisor graph. Moreover, we study some combinatorial properties of ${\Omega}(R)$ such as domination number and independence number. Furthermore, we study the complement of this graph.

TIGHT CLOSURES AND INFINITE INTEGRAL EXTENSIONS

  • Moon, Myung-In;Cho, Young-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.65-72
    • /
    • 1992
  • All rings are commutative, Noetherian with identity and of prime characteristic p, unless otherwise specified. First, we describe the definition of tight closure of an ideal and the properties about the tight closure used frequently. The technique used here for the tight closure was introduced by M. Hochster and C. Huneke [4,5, or 6]. Using the concepts of the tight closure and its properties, we will prove that if R is a complete local domain and F-rational, then R is Cohen-Macaulay. Next, we study the properties of R$^{+}$, the integral closure of a domain in an algebraic closure of its field of fractions. In fact, if R is a complete local domain of characteristic p>0, then R$^{+}$ is Cohen-Macaulay [8]. But we do not know this fact is true or not if the characteristic of R is zero. For the special case we can show that if R is a non-Cohen-Macaulay normal domain containing the rationals Q, then R$^{+}$ is not Cohen-Macaulay. Finally we will prove that if R is an excellent local domain of characteristic p and F-ratiional, then R is Cohen-Macaulay.aulay.

  • PDF

A GENERALIZATION OF THE PRIME RADICAL OF IDEALS IN COMMUTATIVE RINGS

  • Harehdashti, Javad Bagheri;Moghimi, Hosein Fazaeli
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.543-552
    • /
    • 2017
  • Let R be a commutative ring with identity, and ${\phi}:{\mathfrak{I}}(R){\rightarrow}{\mathfrak{I}}(R){\cup}\{{\varnothing}\}$ be a function where ${\mathfrak{I}}(R)$ is the set of all ideals of R. Following [2], a proper ideal P of R is called a ${\phi}$-prime ideal if $x,y{\in}R$ with $xy{\in}P-{\phi}(P)$ implies $x{\in}P$ or $y{\in}P$. For an ideal I of R, we define the ${\phi}$-radical ${\sqrt[{\phi}]{I}}$ to be the intersection of all ${\phi}$-prime ideals of R containing I, and show that this notion inherits most of the essential properties of the usual notion of radical of an ideal. We also investigate when the set of all ${\phi}$-prime ideals of R, denoted $Spec_{\phi}(R)$, has a Zariski topology analogous to that of the prime spectrum Spec(R), and show that this topological space is Noetherian if and only if ${\phi}$-radical ideals of R satisfy the ascending chain condition.

ASSOCIATED PRIME SUBMODULES OF A MULTIPLICATION MODULE

  • Lee, Sang Cheol;Song, Yeong Moo;Varmazyar, Rezvan
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.275-296
    • /
    • 2017
  • All rings considered here are commutative rings with identity and all modules considered here are unital left modules. A submodule N of an R-module M is said to be extended to M if $N=aM$ for some ideal a of R and it is said to be fully invariant if ${\varphi}(L){\subseteq}L$ for every ${\varphi}{\in}End(M)$. An R-module M is called a [resp., fully invariant] multiplication module if every [resp., fully invariant] submodule is extended to M. The class of fully invariant multiplication modules is bigger than the class of multiplication modules. We deal with prime submodules and associated prime submodules of fully invariant multiplication modules. In particular, when M is a nonzero faithful multiplication module over a Noetherian ring, we characterize the zero-divisors of M in terms of the associated prime submodules, and we show that the set Aps(M) of associated prime submodules of M determines the set $Zdv_M(M)$ of zero-dvisors of M and the support Supp(M) of M.

ON FINITENESS PROPERTIES ON ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES AND EXT-MODULES

  • Chu, Lizhong;Wang, Xian
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.239-250
    • /
    • 2014
  • Let R be a commutative Noetherian (not necessarily local) ring, I an ideal of R and M a finitely generated R-module. In this paper, by computing the local cohomology modules and Ext-modules via the injective resolution of M, we proved that, if for an integer t > 0, dim$_RH_I^i(M){\leq}k$ for ${\forall}i$ < t, then $$\displaystyle\bigcup_{i=0}^{j}(Ass_RH_I^i(M))_{{\geq}k}=\displaystyle\bigcup_{i=0}^{j}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$$ for ${\forall}j{\leq}t$ and ${\forall}n$ >0. This shows that${\bigcup}_{n>0}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$ is a finite set for ${\forall}i{\leq}t$. Also, we prove that $\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1^{n_1},x_2^{n_2},{\ldots},x_i^{n_i})M)_{{\geq}k}=\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1,x_2,{\ldots},x_i)M)_{{\geq}k}$ if $x_1,x_2,{\ldots},x_r$ is M-sequences in dimension > k and $n_1,n_2,{\ldots},n_r$ are some positive integers. Here, for a subset T of Spec(R), set $T_{{\geq}i}=\{{p{\in}T{\mid}dimR/p{\geq}i}\}$.