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A GENERALIZATION OF THE PRIME RADICAL OF

IDEALS IN COMMUTATIVE RINGS

Javad Bagheri Harehdashti and Hosein Fazaeli Moghimi

Abstract. Let R be a commutative ring with identity, and φ : I (R) →
I (R) ∪ {∅} be a function where I (R) is the set of all ideals of R. Fol-
lowing [2], a proper ideal P of R is called a φ-prime ideal if x, y ∈ R with
xy ∈ P − φ(P ) implies x ∈ P or y ∈ P . For an ideal I of R, we define

the φ-radical φ
√

I to be the intersection of all φ-prime ideals of R contain-
ing I, and show that this notion inherits most of the essential properties
of the usual notion of radical of an ideal. We also investigate when the
set of all φ-prime ideals of R, denoted Specφ(R), has a Zariski topology

analogous to that of the prime spectrum Spec(R), and show that this
topological space is Noetherian if and only if φ-radical ideals of R satisfy
the ascending chain condition.

1. Introduction

Throughout this paper all rings are commutative with identity and all mod-
ules are unitary. Let R be a ring. We denote the set of all ideals (resp.
proper ideals) of R by I (R) (resp. I ∗(R)). Anderson and Smith [3], defined
a weakly prime ideal, i.e., a proper ideal P of R with the property that for
a, b ∈ R, 0 6= ab ∈ P implies a ∈ P or b ∈ P . Weakly prime elements were
introduced by Galovich in [7], and used by Agargün et al. [1], to study the
unique factorization in rings with zero-divisors. In studying unique factoriza-
tion domains, Bhatwadekar and Sharma [5] defined the notion of almost prime
ideal, i.e., an ideal P ∈ I ∗(R) with the property that if a, b ∈ R, ab ∈ P −P 2,
then either a ∈ P or b ∈ P . Thus a weakly prime ideal is almost prime and
any proper idempotent ideal is also almost prime. Moreover, an ideal P of
R is almost prime if and only if P/P 2 is a weakly prime ideal of R/P 2. An-
derson and Bataineh in [2], extended these concepts to φ-prime ideals. Let
φ : I (R) → I (R) ∪ {∅} be a function. A proper ideal P of R is called φ-

prime if for x, y ∈ R, xy ∈ P − φ(P ) implies x ∈ P or y ∈ P . In fact, P is a
φ-prime ideal of R if and only if P/φ(P ) is a weakly prime ideal of R/φ(P ).
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Since P − φ(P ) = P − (P ∩ φ(P )), there is no loss of generality in assuming
that φ(P ) ⊆ P . We henceforth make this assumption. Given two functions
ψ1, ψ2 : I (R) → I (R) ∪ {∅}, we define ψ1 ≤ ψ2 if ψ1(I) ⊆ ψ2(I) for each
I ∈ I (R).

For a ring R, we consider the following functions φα : I (R) → I (R)∪ {∅}
and the corresponding φα-prime ideals which were introduced in [2] and we will
refer to these frequently:

φ∅ φ(P ) = ∅ prime ideal

φ0 φ(P ) = 0 weakly prime ideal

φ2 φ(P ) = P 2 almost prime ideal

φn (n ≥ 2) φ(P ) = Pn n-almost prime ideal

φω φ(P ) =
∞

∩
n=1

Pn ω-prime ideal

φ1 φ(P ) = P any ideal.

Observe that

(∗) φ∅ ≤ φ0 ≤ φω ≤ · · · ≤ φn ≤ · · · ≤ φ2 ≤ φ1.

In the rest of this paper, the set of these functions is denoted by A, that
is A = {φ∅, φ0, φω , . . . , φn, . . . , φ2, φ1}, and A∗ = A − {φ1}. Let φ : I (R) →
I (R) ∪ {∅} be a function. We define the φ-radical of an ideal I, denoted

by φ
√
I, to be the intersection of all φ-prime ideals of R containing I. When

φ = φ∅, we use
√
I instead of φ∅

√
I. It follows from (∗) that:

√
I ⊇

φ0
√
I ⊇

φω
√
I ⊇ · · · ⊇

φn+1
√
I ⊇

φn
√
I ⊇ · · · ⊇

φ2
√
I ⊇

φ1
√
I = I.

If φ, ψ : I (R) → I (R) ∪ {∅} are two functions such that φ ≤ ψ, then
ψ
√

φ
√
I =

φ
√

ψ
√
I = φ

√
I (Theorem 2.5). It is shown that if R is a Noetherian

integral domain and I ∈ I ∗(R), then φ
√
I =

√
I for all φ : I (R) → I (R)∪{∅}

with φ ≤ φ3 (Proposition 2.12). In particular, if R is a PID, then φ
√
I =

√
I

for all φ : I (R) → I (R) ∪ {∅} with φ ≤ φ2 (Proposition 2.14).
The set of all φ-prime ideals of R is called the φ-prime spectrum of R and

denoted by Specφ(R) or simply Xφ. Now, by (∗), we have:

Xφ∅
⊆ Xφ0

⊆ Xφω ⊆ · · · ⊆ Xφn+1
⊆ Xφn ⊆ · · · ⊆ Xφ2

⊆ Xφ1
= I

∗(R).

In particular, if φ = φ∅, then Specφ(R) = Spec(R) and if φ = φ1, then
Specφ(R) = I ∗(R). For any ideal I of R we define Vφ(I) to be the set of all
φ-prime ideals of R containing I. Of course, Vφ(R) is just the empty set and
Vφ(0) is Xφ. Note that for any family of ideals {Iγ | γ ∈ Γ} of R, ∩

γ∈Γ
Vφ(Iγ) =

Vφ(
∑

γ∈Γ

Iγ). Thus if ζφ(R) denotes the collections of all subsets Vφ(I) of Xφ,

then ζφ(R) contains the empty set and Xφ, and ζφ(R) is closed under arbitrary
intersections. We shall say R is a ring with a φ-Zariski topology, or a φ-top ring
for short, if ζφ(R) is closed under finite union, for in this case ζφ(R) satisfies the
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axioms for the closed sets of a topological space. In this paper, we investigate
the behaviour of φ-top rings under the idealization of a module and finite direct
products. In particular, we study this topological space from the point of view
of Noetherian spaces. It is shown that, for a φ-top ring R, Xφ with φ-Zariski
topology is a Noetherian space if and only if ascending chain condition holds
for φ-radical ideals of R (Theorem 3.10).

2. φ-radical of ideals

Let R be a ring and I be an ideal of R. It is well-known that the radical of
I is the intersection of all prime ideals of R containing I and characterized as
the set of all a ∈ R for which an ∈ I for some positive integer n. A natural
generalization of this notion is the following.

Definition. Let R be a ring, I an ideal of R and φ : I (R) → I (R) ∪ {∅} be

a function. The φ-radical of I, denoted by φ
√
I, is defined to be the intersection

of all φ-prime ideals of R containing I. In other words,
φ
√
I = ∩{P ∈ Specφ(R) : P ⊇ I}.

Moreover, I is called a φ-radical ideal if φ
√
I = I.

We note that, by definition, an ideal I of R is a φ∅-radical ideal if and only
if I is a radical ideal.

Example 2.1. In this example we compute and compare the φ-radical of some
ideals for some φ ∈ A.

(1) Let R = Z4, 0 = (0̄), and P = (2̄). Then
√
0 =

φ∅

√
0 = P ) 0 =

φ0
√
0.

This also shows that 0 is a φ0-radical ideal of R which is not radical.
(2) Let R = Z12, 0 = (0̄), P1 = (2̄), P2 = (3̄), I = (4̄), and J = (6̄). Then

I ∗(R) = {0, I, J, P1, P2}, X = Xφ∅
= {P1, P2}, Xφ0

= {0, P1, P2} and
Xφ2

= {0, P1, P2, I}. Hence we have

φ2
√
0 =

φ0
√
0 = 0 (

√
0 = P1 ∩ P2 = J ,

φ2
√
I = I ( φ0

√
I =

√
I = P1

and
φ2
√
J =

φ0
√
J =

√
J = P1 ∩ P2 = J.

(3) Let (R,M) be a quasilocal ring with M2 = 0. Let I ⊂ M. Then by
[3, Example 12], the M[X ]-primary ideal I[X ] of R[X ] is weakly prime.
Hence we have

M[X ] =
√

I[X ] ⊃ I[X ] = φ0

√

I[X ].

Thus I[X ] is a φ-radical ideal of R[X ] for all φ ∈ A− {φ∅}.

(4) Let S be a ring such that
√
0 6= 0, T a ring and R = S × T . Let

I = 0 × T . Then φω

√
I ( φ0

√
I. In fact, the weakly prime ideals of R

containing I are exactly the prime ideals of R containing I [3, Theorem

7]. Hence φ0
√
I =

√
I =

√
0× T ) 0× T = I. On the other hand, since
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0 is a weakly prime ideal, I = 0 × T is a φω-prime ideal of R, by
[2, Theorem 8] and hence φω

√
I = I.

Lemma 2.2. Let R be a ring, φ : I (R) → I (R) ∪ {∅} a function and

I, J ∈ I (R). Then

(1) If I ⊆ J , then
φ
√
I ⊆ φ

√
J .

(2) φ

√

⋂

γ∈Γ

Iγ ⊆
⋂

γ∈Γ

φ

√

Iγ Iγ(γ ∈ Γ) of ideals of R.

(3) φ
√
I1I2 · · · In ⊆ φ

√
I1 ∩ I2 ∩ · · · ∩ In ⊆ φ

√
I1∩

φ
√
I2∩· · ·∩ φ

√
In for each fi-

nite set {I1, . . . , In} of ideals of R, and the equality holds if I1I2 · · · In *
φ(P ) for all φ-prime ideals P of R containing I1I2 · · · In.

(4)
φ
√

φ
√
I = φ

√
I.

Proof. (1) It is clear, since every φ-prime ideal P ofR containing J contains also
I. (2) It is a direct result of (1). (3) Given inclusions are clear by (1). Let P be
a φ-prime ideal of R containing I1I2 · · · In. By assumption, I1I2 · · · In * φ(P )
and hence Ii1Ii2 · · · Iij * φ(P ) for all 1 ≤ j ≤ n. Now [2, Theorem 13] gives

the result. (4) Since I ⊆ φ
√
I, by (1), φ

√
I ⊆

φ
√

φ
√
I. The reverse containment

follows from the fact that every φ-prime ideal of R containing I contains also
φ
√
I. �

Corollary 2.3. Let R be a ring and φ : I (R) → I (R) ∪ {∅} be a function.

Then I is a φ-radical ideal of R if and only if I is an intersection of φ-prime

ideals of R.

Proof. (⇒) It follows from definition.
(⇐) Use Lemma 2.2(2). �

Corollary 2.4. Let R be a ring, n a positive integer and φ : I (R) → I (R)∪
{∅} a function. If I is an ideal of R such that for every φ-prime ideal P of

R containing I, In * φ(P ), then
φ
√
In = φ

√
I. In particular,

φ0
√
In = 0 or

φ0
√
In = φ0

√
I.

Proof. The first part follows from Lemma 2.2. For the “in particular” part, it
is clear that if In = 0, then φ0

√
In = 0, and if In 6= 0, then, by the first part,

φ0
√
In = φ0

√
I. �

Theorem 2.5. Let R be a ring, φ, ψ : I (R) → I (R) ∪ {∅} two functions

such that φ ≤ ψ and I ∈ I (R). Then

(1) ψ
√
I ⊆ φ

√
I.

(2)
ψ
√

φ
√
I =

φ
√

ψ
√
I = φ

√
I. In particular,

√

ψ
√
I =

ψ
√√

I =
√
I.

(3)
λn

√

···

√

λ2

√

λ1
√
I = φ

√
I for λ1, λ2, . . . , λn ∈ {φ, ψ} and for n ≥ 2.

(4) If I is a φ-radical ideal of R, then it is ψ-radical.
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Proof. (1) Since φ ≤ ψ, every φ-prime ideal is a ψ-prime ideal. Thus the

desired result is clear. (2) By (1), φ
√
I ⊆

φ
√

ψ
√
I ⊆

φ
√

φ
√
I. Hence, by Lemma

2.2(4), we have
φ
√

ψ
√
I = φ

√
I. On the other hand, by (1) and Lemma 2.2(4),

ψ
√

φ
√
I ⊆

φ
√

φ
√
I = φ

√
I ⊆

ψ
√

φ
√
I. Thus we have the asserted equality. For “in

particular” part, put φ = φ∅ in the first part. (3) It follows inductively by (2)
and Lemma 2.2. (4) It follows directly from (2). �

Corollary 2.6. Let R be a ring, I and J ideals of R, and φ : I (R) →
I (R) ∪ {∅} a function. Then

(1) φ
√
I = R if and only if I = R.

(2) φ
√
I + J =

φ
√

φ
√
I + φ

√
J . In particular, I + J = R if and only if

φ
√
I +

φ
√
J = R.

Proof. (1) (⇒) Since φ
√
I ⊆

√
I, φ

√
I = R implies that

√
I = R and this gives

that I = R. (⇐) Clear.

(2) Clearly I + J ⊆ φ
√
I + φ

√
J ⊆ φ

√
I + J . Now taking φ-radical and using

Lemma 2.2 give the result. �

Let R be a ring and M be an R-module. Then R(+)M with coordinate-
wise addition, and multiplication (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1) is a
commutative ring with identity called the idealization of M . The prime ideals
of R(+)M have the form P(+)M where P is a prime ideal of R [4, Theorem
3.2]. The homogeneous ideals of (the graded ring) R(+)M have the form I(+)N ,
where I is an ideal of R, N is a submodule of M , and IM ⊆ N [4, Theorem
3.3]. A ring R(+)M is called a homogeneous ring if every ideal of R(+)M is
homogeneous.

Proposition 2.7. Let R be a ring, M an R-module, and R(+)M a homoge-

neous ring. Let φ : I (R) → I (R) ∪ {∅} and ψ : I (R(+)M) → I (R(+)M) ∪
{∅} be two functions such that ψ(I(+)N) = φ(I)(+)N . Then

(1) If Q = P(+)N is a ψ-prime ideal of R(+)M , then P is a φ-prime ideal

of R.

(2) P is a φ-prime ideal of R if and only if P(+)M is a ψ-prime ideal of

R(+)M .

(3) ψ

√

I(+)M = φ
√
I(+)M .

Proof. (1) Let r1r2 ∈ P − φ(P ) for r1, r2 ∈ R. Then (r1, 0)(r2, 0) ∈ Q− ψ(Q).
Since Q is ψ-prime, (r1, 0) ∈ Q or (r2, 0) ∈ Q which implies that r1 ∈ P

or r2 ∈ P . Thus P is a φ prime ideal of R. (2) Let P be a φ-prime ideal
of R, Q = P(+)M and let (r1,m1)(r2,m2) ∈ Q − ψ(Q) for r1, r2 ∈ R and
m1,m2 ∈ M . Then r1r2 ∈ P − φ(P ). Since P is φ-prime, r1 ∈ P or r2 ∈ P .
Thus (r1,m1) ∈ Q or (r2,m2) ∈ Q. Hence Q is a ψ-prime ideal of R(+)M . The
converse follows from (1). (3) Let Q be a ψ-prime ideal of R(+)M containing
I(+)M . Since Q contains 0(+)M , Q = P(+)M where P is a φ-prime ideal of

R containing I by (2). Hence φ
√
I(+)M ⊆ ψ

√

I(+)M . Also, if P is a φ-prime
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ideal of R containing I, then P(+)M is a ψ-prime ideal containing I(+)M . This

follows ψ

√

I(+)M ⊆ φ
√
I(+)M . �

Proposition 2.8. Let R be a ring and I ∈ I ∗(R). Then either
φ
√
I =

√
I or

( φ
√
I)2 ⊆ φ(P ) for some φ-prime ideal P of R containing I.

Proof. If every φ-prime ideal of R containing I is prime, then clearly φ
√
I =

√
I .

Now let P be a φ-prime ideal of R containing I which is not prime and let
x, y ∈ φ

√
I. Then x, y ∈ P and hence xy ∈ P 2 ⊆ φ(P ), by [2, Theorem 5]. Thus

( φ
√
I)2 ⊆ φ(P ). �

Corollary 2.9. Let R be a ring, I ∈ I ∗(R) and φ ∈ A∗. Then either
φ
√
I =√

I or ( φ
√
I)2 ⊆ P 2 for some φ2-prime ideal P of R containing I.

Proof. Let φ
√
I 6=

√
I. Then there exists a φ-prime ideal P of R containing

I which is not prime. Since φ ∈ A∗, P is a φ2-prime ideal, and hence by
Proposition 2.8, we have

(
φ
√
I)2 ⊆ φ(P ) ⊆ φ2(P ) = P 2. �

Corollary 2.10. Let R be a ring, and I ∈ I ∗(R). Then either
φ0
√
I =

√
I or

( φ0
√
I)2 = 0.

Proof. It is obtained by considering φ = φ0 in Proposition 2.8. �

Proposition 2.11. Let R be a ring, I ∈ I ∗(R) and φ : I (R) → I (R)∪ {∅}

a function such that φω ≤ φ ≤ φ3. Then
φ
√
I = φω

√
I. In particular, if I is a

φ-radical ideal, then I is φω-radical.

Proof. Since φω ≤ φ, by Theorem 2.5, φ
√
I ⊆ φω

√
I. Let P be a φ-prime ideal

of R containing I. Since φ ≤ φ3, by [2, Corollary 6], P is a φω-prime ideal

and so φω
√
I ⊆ φ

√
I. The “In particular” part follows immediately from the first

part. �

The next three propositions, which are easily obtained from some assertions
of [2], provide a good supply of examples of φ-radical ideals for some φ ∈ A.

Proposition 2.12. Let R be a Noetherian integral domain, I ∈ I
∗(R) and

φ : I (R) → I (R) ∪ {∅} a function such that φ ≤ φ3. Then
φ
√
I =

√
I. In

particular, I is a radical ideal of R if and only if I is a φ-radical ideal of R.

Proof. By [2, Corollary 10], P is a prime ideal of R if and only if P is a φ3-

prime ideal of R. Hence we have φ3
√
I =

√
I. Thus φ

√
I =

√
I for all functions

φ : I (R) → I (R) ∪ {∅} with φ ≤ φ3, which also yields the “in particular”
part. �

Example 2.13. Let K be a field, R = K[[X3, X4, X5]], and M = (X3, X4,
X5). By [5, Example, p. 47], I = (X3, X4) is an M-primary ideal of R which

is φ2-prime. On the other hand, as we show in Proposition 2.12, φ
√
I =

√
I for

all φ ∈ A− {φ1, φ2}. It follows that
φ3
√
I = M ) I = φ2

√
I.
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Proposition 2.14. Let R be a PID, I ∈ I ∗(R) and φ : I (R) → I (R)∪{∅}

a function such that φ ≤ φ2. Then
φ
√
I =

√
I. In particular, I is a radical ideal

of R if and only if I is a φ-radical ideal of R.

Proof. By [2, Theorem 12], P is a prime ideal of R if and only if P is a φ-prime
ideal of R, where φ ≤ φ2. Hence the result follows clearly. �

Proposition 2.15. Let R be a ring, I ∈ I ∗(R) and φ : I (R) → I (R)∪ {∅}
a function. If R is von Neumann regular or (R,M) is quasilocal with M2 = 0,
then I is a φ-radical ideal for each φω ≤ φ ≤ φ2.

Proof. By [2, Corollary 18]. �

3. φ-top rings

Let R be a ring and φ : I (R) → I (R) ∪ {∅} a function. Recall that the
φ-prime spectrum of R, denoted by Specφ(R) or simply Xφ, is the set of all
φ-prime ideals of R. For an ideal I of R, let Vφ(I) denotes the set of all φ-prime
ideals P of R such that P ⊇ I, i.e., Vφ(I) = {P ∈ Xφ : P ⊇ I}. When φ = φ∅,
we use X and V (I) instead of Xφ∅

and Vφ∅
(I), respectively. The following

lemma collects some elementary facts about the sets Vφ(I).

Lemma 3.1. With the above notations we have,

(1) Vφ(∅) = Xφ and Vφ(R) = ∅.

(2) ∩
γ∈Γ

Vφ(Iγ) = Vφ(
∑

γ∈Γ

Iγ) for every family Iγ(γ ∈ Γ) of ideals of R.

(3) Vφ(I) ∪ Vφ(J) ⊆ Vφ(I ∩ J) ⊆ Vφ(IJ) for any ideals I, J of R.

(4) Vφ(I) = Vφ(
φ
√
I) for any ideal I of R.

Proof. Clear. �

From the above lemma, we can easily see that there exists a topology, τφ say,
on Xφ having the set ζφ(R) = {Vφ(Iγ) | Iγ is an ideal of R} as the collection
of all closed sets if and only if ζφ(R) is closed under finite union. When this is
the case, we call the ring R a φ-top ring. It is well-known that any ring R is a
φ∅-top ring.

Example 3.2. (1) Let R be a ring which is an injective R-module, and 0 6= M
be a maximal ideal of R with M2 = 0. By [8, Lemma 2.25], 0 ( M ( R is the
only ideal of R. Hence we have X = V (M) = V (0) = {M}. Moreover, for any
φ ≥ φ0, we have Xφ = {0,M} = I ∗(R), Vφ(0) = I ∗(R) and Vφ(M) = {M}.
Now, it is easily seen that R is a φ-top ring for all φ ≥ φ0 and hence R is a
φ-top ring for each φ ∈ A.

(2) Let R be a valuation ring and φ : I (R) → I (R) ∪ {∅} a function. It
is well-known that the ideals of R are totally ordered by inclusion. Hence, for
any ideals I and J of R, Vφ(I) ⊆ Vφ(J) or Vφ(J) ⊆ Vφ(I). Therefore, every
valuation ring is a φ-top ring.
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(3) Let R = K[X,Y ]/(X,Y )2, whereK is a field. Then R is not a φ-top ring,
for each φ ≥ φ0. To see this, assume the contrary. Let M = (X,Y )/(X,Y )2,
I = (X̄) and J = (Ȳ ). Since M2 = 0, every proper ideal of R is φ0-prime and
hence φ-prime. Since R is assumed to be φ-top, there exists K ∈ I

∗(R) such
that Vφ(I)∪ Vφ(J) = Vφ(K). This implies that I, J ∈ Vφ(K) and hence I ⊇ K

and J ⊇ K. On the other hand K ∈ Vφ(I) or K ∈ Vφ(J). Let K ∈ Vφ(I).
Then I ⊆ K which shows that I ⊆ K ⊆ J , a contradiction.

(4) Let R be an integral domain. It is clear that R is a φ0-top ring. Now,
let I and J be two ideals of R such that I * J , J * I and I ∩ J be an almost
prime ideal of R. Then I∩J ∈ Vφ2

(I∩J) but I∩J /∈ Vφ2
(I) and I∩J /∈ Vφ2

(J)
and hence I ∩ J /∈ Vφ2

(I) ∪ Vφ2
(J), that is, R is not a φ2-top ring.

Proposition 3.3. Let R be a ring, I, J ∈ I (R) and φ : I (R) → I (R)∪{∅}
a function. If for every φ-prime ideal P of R containing IJ , IJ * φ(P ), then
R is a φ-top ring.

Proof. Let P ∈ Vφ(IJ). Then, by [2, Theorem 13], P ∈ Vφ(I) or P ∈ Vφ(J).
Thus, by the Lemma 3.1(3), Vφ(I)∪ Vφ(J) = Vφ(I ∩ J) = Vφ(IJ), that is, R is
a φ-top ring. �

Proposition 3.4. Let R be a ring, φ : I (R) → I (R)∪{∅} be a function and

P ∈ Xφ −X. Then V (φ(P )) = V (P ).

Proof. Since φ(P ) ⊆ P , we have V (P ) ⊆ V (φ(P )). On the other hand, since P
is not a prime ideal of R, by [2, Theorem 5], P 2 ⊆ φ(P ). Now, if Q ∈ V (φ(P )),
then P 2 ⊆ Q; hence Q ⊇ P . So V (φ(P )) ⊆ V (P ). �

Corollary 3.5. Let R be a ring and P ∈ Xφ0
−X. Then V (P ) = V (0).

Proposition 3.6. Let R be a ring and φ, ψ : I (R) → I (R) ∪ {∅} be two

functions such that ψ ≤ φ. If R is a φ-top ring, then R is a ψ-top ring.

Proof. For any ideal I of R we have Vψ(I) = Vφ(I) ∩ Xψ. Now let I1 and I2
be two ideals of R. Then Vψ(I1) ∪ Vψ(I2) = (Vφ(I1) ∩Xψ) ∪ (Vφ(I2) ∩Xψ) =
(Vφ(I1)∪Vφ(I2))∩Xψ . Since R is a φ-top ring, there exists an idealK of R such
that Vφ(I1) ∪ Vφ(I2) = Vφ(K). Thus Vψ(I1) ∪ Vψ(I2) = Vφ(K) ∩Xψ = Vψ(K).
Therefore R is a ψ-top ring. �

Theorem 3.7. Let R be a ring and φ : I (R) → I (R)∪{∅} a function. Then

R is a φ-top ring if and only if Vφ(I) ∪ Vφ(J) = Vφ(I ∩ J) for any φ-radical

ideals I and J of R.

Proof. (⇒) Let P be any φ-prime ideal of R and let I and J be φ-radical
ideals of R such that I ∩ J ⊆ P . Since R is a φ-top ring, there exists an
ideal K of R such that Vφ(I) ∪ Vφ(J) = Vφ(K). Now, since I is assumed to
be φ-radical, we have I = ∩

γ∈Γ
Pγ for some φ-prime ideals Pγ(γ ∈ Γ) of R. So

Pγ ∈ Vφ(I) ⊆ Vφ(K) (for each γ ∈ Γ) and hence K ⊆ Pγ(for each γ ∈ Γ)
which shows that K ⊆ ∩

γ∈Γ
Pγ = I. Similarly, K ⊆ J . Thus K ⊆ I ∩ J and
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therefore Vφ(I)∪Vφ(J) ⊆ Vφ(I∩J) ⊆ Vφ(K) = Vφ(I)∪Vφ(J) which implies that
Vφ(I)∪Vφ(J) = Vφ(I∩J). (⇐) Let I and J be ideals of R. Then, by Lemma 3.1

and hypothesis, we have Vφ(I) ∪ Vφ(J) = Vφ(
φ
√
I) ∪ Vφ(

φ
√
J) = Vφ(

φ
√
I ∩ φ

√
J).

Thus, R is a φ-top ring. �

Corollary 3.8. Let R be a ring, and M an R-module. Let φ : I (R) →
I (R) ∪ {∅}, and ψ : I (R(+)M) → I (R(+)M) ∪ {∅} be two functions such

that ψ(I(+)M) = φ(I)(+)M . If R(+)M is a ψ-top ring, then R is a φ-top ring.

Proof. Let I1 and I2 be two φ-radical ideals of R and P ∈ Vφ(I1 ∩ I2). By
Proposition 2.7, J1 = I1(+)M and J2 = I2(+)M are ψ-radical ideals of R(+)M ,
and P(+)M is a ψ-prime ideal of R(+)M . So P(+)M ∈ Vψ(J1 ∩ J2). Thus, by
Theorem 3.7, P(+)M ∈ Vψ(J1) ∪ Vψ(J2). It follows that P ⊇ I1 or P ⊇ I2.
Hence Vφ(I1) ∪ Vφ(I2) = Vφ(I1 ∩ I2), i.e., R is φ-top. �

Theorem 3.9. Let R1 and R2 be rings, ψi : I (Ri) → I (Ri) ∪ {∅} (for
i = 1, 2) be functions, and let φ = ψ1 × ψ2. If Ri is a ψi-top ring such that

for any non-trivial ideal Ii of Ri, ψi(Ii) 6= Ii (for i = 1, 2), then R1 × R2 is a

φ-top ring.

Proof. Let I1 × I2 and J1 × J2 be ideals of R1 × R2. Since Ri is ψi-top,
Vψi(Ii) ∪ Vψi(Ji) = Vψi(Ki) for some ideal Ki of Ri (i = 1, 2). Now, since by
[2, Theorem 16], every φ-prime ideal of R1×R2 has the form P1×R2 or R1×P2,
where Pi is a ψi-prime ideal of Ri (i = 1, 2), we have Vφ(I1×I2)∪Vφ(J1×J2) =
Vφ(K1 ×K2). �

A topological space T is Noetherian provided that the open (respectively,
closed) subsets of T satisfy the ascending (respectively, descending) chain con-
dition, or the maximal (respectively, minimal) condition [6, §4.2]. Recall that
a ring R has Noetherian spectrum (i.e., Spec(R) is a Noetherian space with
the Zariski topology) if and only if the ascending chain condition (ACC) for
radical ideals holds [9, p. 631]. We next generalize this result.

Theorem 3.10. Let R be a φ-top ring, where φ : I (R) → I (R) ∪ {∅} is a

function. Then (Xφ, τφ) is a Noetherian space if and only if ACC holds for φ-

radical ideals of R. In particular, if R is a Noetherian φ-top ring, then (Xφ, τφ)
is a Noetherian space.

Proof. (⇒) Let I1 ⊆ I2 ⊆ · · · be an ascending chain of φ-radical ideals of R.
Then we have the descending chain Vφ(I1) ⊇ Vφ(I2) ⊇ · · · of closed subsets of
(Xφ, τφ). Now, by hypothesis, there is a positive integer n such that Vφ(In) =

Vφ(In+1) = · · · . It follows that φ
√
In = φ

√

In+1 = · · · ; hence In = In+1 = · · · .
(⇐) Let Vφ(I1) ⊇ Vφ(I2) ⊇ · · · be a descending chain of closed subsets of

Xφ. Then φ
√
I1 ⊆ φ

√
I2 ⊆ · · · . Since ACC holds for φ-radical ideals, there is

a positive integer n such that φ
√
In = φ

√

In+1 = · · · , and hence Vφ(
φ
√
In) =

Vφ( φ
√

In+1) = · · · . Now, by Lemma 3.1(4), we have Vφ(In) = Vφ(In+1) = · · · .
The “In particular” statement follows immediately from the first part. �
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Corollary 3.11. Let R be a ring, and let φ, ψ : I (R) → I (R) ∪ {∅} be two

functions such that φ ≤ ψ. If (Xψ , τψ) is a Noetherian space, then (Xφ, τφ) is

a Noetherian space, and in particular, R has Noetherian spectrum.

Proof. Apply Theorem 2.5(4) and Theorem 3.10. �

Corollary 3.12. Let R be a Noetherian domain. Then (Xφ, τφ) is a Noetherian

space for all φ ∈ A− {φ1, φ2}. In particular, if R is a PID, then (Xφ, τφ) is a

Noetherian space for all φ ∈ A− {φ1}.

Proof. If R is a Noetherian domain, by [2, Corollary 10], Vφ(I) = V (I) for all
φ ∈ A− {φ1, φ2}, and if R is a PID, by [2, Theorem 12], Vφ(I) = V (I) for all
φ ∈ A−{φ1}. Thus R is a φ-top ring for these functions φ, and hence (Xφ, τφ)
is a Noetherian space by Theorem 3.10. �

References

[1] A. G. Agargün, D. D. Anderson, and S. Valdes-Leon, Unique factorization rings with

zero divisors, Comm. Algebra, 27 (1999), no. 4, 1967–1974.
[2] D. D. Anderson and M. Bataineh, Generalization of prime ideals, Comm. Algebra 36

(2008), no. 2, 686–696.
[3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4,

831–840.
[4] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009),

no. 1, 3–56.
[5] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes,

Comm. Algebra 33 (2005), no. 1, 43–49.
[6] N. Bourbaki, Commutative Algebra, Chap. 1, 2. Paris: Hermann, 1961.
[7] S. Galovich, Unique factorization rings with zero divisors, Math. Mag. 51 (1978), no. 5,

276–283.
[8] S. K Jain, A. K. Srivastava, and A. A. Tuganbaev, Cyclic modules and the structure of

rings, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2012.
[9] J. Ohm and R. L. Pendleton, Rings with Noetherian spectrum, Duke Math. J. 35 (1968),

631–639.

Javad Bagheri Harehdashti

Department of Mathematics

University of Birjand

Birjand, Iran

E-mail address: j−bagheri@birjand.ac.ir

Hosein Fazaeli Moghimi

Department of Mathematics

University of Birjand

Birjand, Iran

E-mail address: hfazaeli@birjand.ac.ir




