A GENERALIZATION OF THE PRIME RADICAL OF IDEALS IN COMMUTATIVE RINGS

Javad Bagheri Harehdashti and Hosein Fazaeli Moghimi

Abstract

Let R be a commutative ring with identity, and $\phi: \mathscr{I}(R) \rightarrow$ $\mathscr{I}(R) \cup\{\varnothing\}$ be a function where $\mathscr{I}(R)$ is the set of all ideals of R. Following [2], a proper ideal P of R is called a ϕ-prime ideal if $x, y \in R$ with $x y \in P-\phi(P)$ implies $x \in P$ or $y \in P$. For an ideal I of R, we define the ϕ-radical $\sqrt[\phi]{I}$ to be the intersection of all ϕ-prime ideals of R containing I, and show that this notion inherits most of the essential properties of the usual notion of radical of an ideal. We also investigate when the set of all ϕ-prime ideals of R, denoted $\operatorname{Spec}_{\phi}(R)$, has a Zariski topology analogous to that of the prime spectrum $\operatorname{Spec}(R)$, and show that this topological space is Noetherian if and only if ϕ-radical ideals of R satisfy the ascending chain condition.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Let R be a ring. We denote the set of all ideals (resp. proper ideals) of R by $\mathscr{I}(R)$ (resp. $\mathscr{I}^{*}(R)$). Anderson and Smith [3], defined a weakly prime ideal, i.e., a proper ideal P of R with the property that for $a, b \in R, 0 \neq a b \in P$ implies $a \in P$ or $b \in P$. Weakly prime elements were introduced by Galovich in [7], and used by Agargün et al. [1], to study the unique factorization in rings with zero-divisors. In studying unique factorization domains, Bhatwadekar and Sharma [5] defined the notion of almost prime ideal, i.e., an ideal $P \in \mathscr{I}^{*}(R)$ with the property that if $a, b \in R, a b \in P-P^{2}$, then either $a \in P$ or $b \in P$. Thus a weakly prime ideal is almost prime and any proper idempotent ideal is also almost prime. Moreover, an ideal P of R is almost prime if and only if P / P^{2} is a weakly prime ideal of R / P^{2}. Anderson and Bataineh in [2], extended these concepts to ϕ-prime ideals. Let $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ be a function. A proper ideal P of R is called ϕ prime if for $x, y \in R, x y \in P-\phi(P)$ implies $x \in P$ or $y \in P$. In fact, P is a ϕ-prime ideal of R if and only if $P / \phi(P)$ is a weakly prime ideal of $R / \phi(P)$.

[^0]Since $P-\phi(P)=P-(P \cap \phi(P))$, there is no loss of generality in assuming that $\phi(P) \subseteq P$. We henceforth make this assumption. Given two functions $\psi_{1}, \psi_{2}: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$, we define $\psi_{1} \leq \psi_{2}$ if $\psi_{1}(I) \subseteq \psi_{2}(I)$ for each $I \in \mathscr{I}(R)$.

For a ring R, we consider the following functions $\phi_{\alpha}: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ and the corresponding ϕ_{α}-prime ideals which were introduced in [2] and we will refer to these frequently:

ϕ_{\varnothing}	$\phi(P)=\varnothing$	prime ideal
ϕ_{0}	$\phi(P)=0$	weakly prime ideal
ϕ_{2}	$\phi(P)=P^{2}$	almost prime ideal
$\phi_{n}(n \geq 2)$	$\phi(P)=P^{n}$	n-almost prime ideal
ϕ_{ω}	$\phi(P)=\bigcap_{n=1}^{\infty} P^{n}$	ω-prime ideal
ϕ_{1}	$\phi(P)=P$	any ideal.

Observe that

$$
\begin{equation*}
\phi_{\varnothing} \leq \phi_{0} \leq \phi_{\omega} \leq \cdots \leq \phi_{n} \leq \cdots \leq \phi_{2} \leq \phi_{1} . \tag{*}
\end{equation*}
$$

In the rest of this paper, the set of these functions is denoted by \mathcal{A}, that is $\mathcal{A}=\left\{\phi_{\varnothing}, \phi_{0}, \phi_{\omega}, \ldots, \phi_{n}, \ldots, \phi_{2}, \phi_{1}\right\}$, and $\mathcal{A}^{*}=\mathcal{A}-\left\{\phi_{1}\right\}$. Let $\phi: \mathscr{I}(R) \rightarrow$ $\mathscr{I}(R) \cup\{\varnothing\}$ be a function. We define the ϕ-radical of an ideal I, denoted by $\sqrt[\phi]{I}$, to be the intersection of all ϕ-prime ideals of R containing I. When $\phi=\phi_{\varnothing}$, we use \sqrt{I} instead of $\sqrt[\phi]{I}$. It follows from ($*$) that:

$$
\sqrt{I} \supseteq \sqrt[\phi_{0}]{I} \supseteq \sqrt[\phi_{\omega}]{I} \supseteq \cdots \supseteq \sqrt[\phi_{n+1}]{I} \supseteq \sqrt[\phi_{n}]{I} \supseteq \cdots \supseteq \sqrt[\phi_{2}]{I} \supseteq \sqrt[\phi_{1}]{I}=I .
$$

If $\phi, \psi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ are two functions such that $\phi \leq \psi$, then $\sqrt[\psi]{\sqrt[\phi]{I}}=\sqrt[\phi]{\sqrt[L]{I}}=\sqrt[\phi]{I}$ (Theorem 2.5). It is shown that if R is a Noetherian integral domain and $I \in \mathscr{I}^{*}(R)$, then $\sqrt[\phi]{I}=\sqrt{I}$ for all $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ with $\phi \leq \phi_{3}$ (Proposition 2.12). In particular, if R is a PID, then $\sqrt[\phi]{I}=\sqrt{I}$ for all $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ with $\phi \leq \phi_{2}$ (Proposition 2.14).

The set of all ϕ-prime ideals of R is called the ϕ-prime spectrum of R and denoted by $\operatorname{Spec}_{\phi}(\mathrm{R})$ or simply X_{ϕ}. Now, by (*), we have:

$$
X_{\phi_{\varnothing}} \subseteq X_{\phi_{0}} \subseteq X_{\phi_{\omega}} \subseteq \cdots \subseteq X_{\phi_{n+1}} \subseteq X_{\phi_{n}} \subseteq \cdots \subseteq X_{\phi_{2}} \subseteq X_{\phi_{1}}=\mathscr{I}^{*}(R)
$$

In particular, if $\phi=\phi_{\varnothing}$, then $\operatorname{Spec}_{\phi}(\mathrm{R})=\operatorname{Spec}(R)$ and if $\phi=\phi_{1}$, then $\operatorname{Spec}_{\phi}(\mathrm{R})=\mathscr{I}^{*}(R)$. For any ideal I of R we define $V_{\phi}(I)$ to be the set of all ϕ-prime ideals of R containing I. Of course, $V_{\phi}(R)$ is just the empty set and $V_{\phi}(0)$ is X_{ϕ}. Note that for any family of ideals $\left\{I_{\gamma} \mid \gamma \in \Gamma\right\}$ of $R, \underset{\gamma \in \Gamma}{\cap} V_{\phi}\left(I_{\gamma}\right)=$ $V_{\phi}\left(\sum_{\gamma \in \Gamma} I_{\gamma}\right)$. Thus if $\zeta_{\phi}(R)$ denotes the collections of all subsets $V_{\phi}(I)$ of X_{ϕ}, then $\zeta_{\phi}(R)$ contains the empty set and X_{ϕ}, and $\zeta_{\phi}(R)$ is closed under arbitrary intersections. We shall say R is a ring with a ϕ-Zariski topology, or a ϕ-top ring for short, if $\zeta_{\phi}(R)$ is closed under finite union, for in this case $\zeta_{\phi}(R)$ satisfies the
axioms for the closed sets of a topological space. In this paper, we investigate the behaviour of ϕ-top rings under the idealization of a module and finite direct products. In particular, we study this topological space from the point of view of Noetherian spaces. It is shown that, for a ϕ-top ring R, X_{ϕ} with ϕ-Zariski topology is a Noetherian space if and only if ascending chain condition holds for ϕ-radical ideals of R (Theorem 3.10).

2. ϕ-radical of ideals

Let R be a ring and I be an ideal of R. It is well-known that the radical of I is the intersection of all prime ideals of R containing I and characterized as the set of all $a \in R$ for which $a^{n} \in I$ for some positive integer n. A natural generalization of this notion is the following.

Definition. Let R be a ring, I an ideal of R and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ be a function. The ϕ-radical of I, denoted by $\sqrt[\phi]{I}$, is defined to be the intersection of all ϕ-prime ideals of R containing I. In other words,

$$
\sqrt[\phi]{I}=\cap\left\{P \in \operatorname{Spec}_{\phi}(\mathrm{R}): P \supseteq I\right\}
$$

Moreover, I is called a ϕ-radical ideal if $\sqrt[\phi]{I}=I$.
We note that, by definition, an ideal I of R is a ϕ_{\varnothing}-radical ideal if and only if I is a radical ideal.

Example 2.1. In this example we compute and compare the ϕ-radical of some ideals for some $\phi \in \mathcal{A}$.
(1) Let $R=\mathbb{Z}_{4}, 0=(\overline{0})$, and $P=(\overline{2})$. Then

$$
\sqrt{0}=\sqrt[\phi]{0}=P \supsetneq 0=\sqrt[\phi_{0}]{0}
$$

This also shows that 0 is a ϕ_{0}-radical ideal of R which is not radical.
(2) Let $R=\mathbb{Z}_{12}, 0=(\overline{0}), P_{1}=(\overline{2}), P_{2}=(\overline{3}), I=(\overline{4})$, and $J=(\overline{6})$. Then $\mathscr{I}^{*}(R)=\left\{0, I, J, P_{1}, P_{2}\right\}, X=X_{\phi_{\varnothing}}=\left\{P_{1}, P_{2}\right\}, X_{\phi_{0}}=\left\{0, P_{1}, P_{2}\right\}$ and $X_{\phi_{2}}=\left\{0, P_{1}, P_{2}, I\right\}$. Hence we have

$$
\sqrt[\phi_{2}]{0}=\sqrt[\phi_{0}]{0}=0 \subsetneq \sqrt{0}=P_{1} \cap P_{2}=J, \quad \sqrt[\phi_{2}]{I}=I \subsetneq \sqrt[\phi_{0}]{I}=\sqrt{I}=P_{1}
$$

and

$$
\sqrt[\phi_{2}]{J}=\sqrt[\phi_{0}]{J}=\sqrt{J}=P_{1} \cap P_{2}=J
$$

(3) Let (R, \mathcal{M}) be a quasilocal ring with $\mathcal{M}^{2}=0$. Let $I \subset \mathcal{M}$. Then by [3, Example 12], the $\mathcal{M}[X]$-primary ideal $I[X]$ of $R[X]$ is weakly prime. Hence we have

$$
\mathcal{M}[X]=\sqrt{I[X]} \supset I[X]=\sqrt[\phi]{I[X]} .
$$

Thus $I[X]$ is a ϕ-radical ideal of $R[X]$ for all $\phi \in \mathcal{A}-\left\{\phi_{\varnothing}\right\}$.
(4) Let S be a ring such that $\sqrt{0} \neq 0, T$ a ring and $R=S \times T$. Let $I=0 \times T$. Then $\sqrt[\phi_{\omega}]{I} \subsetneq \sqrt[\phi_{0}]{I}$. In fact, the weakly prime ideals of R containing I are exactly the prime ideals of R containing I [3, Theorem 7]. Hence $\sqrt[\phi]{\infty}=\sqrt{I}=\sqrt{0} \times T \supsetneq 0 \times T=I$. On the other hand, since

0 is a weakly prime ideal, $I=0 \times T$ is a ϕ_{ω}-prime ideal of R, by $[2$, Theorem 8$]$ and hence $\sqrt[\phi]{I}=I$.

Lemma 2.2. Let R be a ring, $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ a function and $I, J \in \mathscr{I}(R)$. Then
(1) If $I \subseteq J$, then $\sqrt[\phi]{I} \subseteq \sqrt[\phi]{J}$.
(2) $\sqrt[\phi]{\bigcap_{\gamma \in \Gamma} I_{\gamma}} \subseteq \bigcap_{\gamma \in \Gamma} \sqrt[\phi]{I_{\gamma}} I_{\gamma}(\gamma \in \Gamma)$ of ideals of R.
(3) $\sqrt[\phi]{I_{1} I_{2} \cdots I_{n}} \subseteq \sqrt[\phi]{I_{1} \cap I_{2} \cap \cdots \cap I_{n}} \subseteq \sqrt[\phi]{I_{1}} \cap \sqrt[\phi]{I_{2}} \cap \cdots \cap \sqrt[\phi]{I_{n}}$ for each finite set $\left\{I_{1}, \ldots, I_{n}\right\}$ of ideals of R, and the equality holds if $I_{1} I_{2} \cdots I_{n} \nsubseteq$ $\phi(P)$ for all ϕ-prime ideals P of R containing $I_{1} I_{2} \cdots I_{n}$.
(4) $\sqrt[\phi]{\sqrt[\phi]{I}}=\sqrt[\phi]{I}$.

Proof. (1) It is clear, since every ϕ-prime ideal P of R containing J contains also I. (2) It is a direct result of (1). (3) Given inclusions are clear by (1). Let P be a ϕ-prime ideal of R containing $I_{1} I_{2} \cdots I_{n}$. By assumption, $I_{1} I_{2} \cdots I_{n} \nsubseteq \phi(P)$ and hence $I_{i_{1}} I_{i_{2}} \cdots I_{i_{j}} \nsubseteq \phi(P)$ for all $1 \leq j \leq n$. Now [2, Theorem 13] gives the result. (4) Since $I \subseteq \sqrt[\phi]{I}$, by (1), $\sqrt[\phi]{I} \subseteq \sqrt[\phi]{\sqrt[\phi]{I}}$. The reverse containment follows from the fact that every ϕ-prime ideal of R containing I contains also $\sqrt[+]{I}$.

Corollary 2.3. Let R be a ring and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ be a function. Then I is a ϕ-radical ideal of R if and only if I is an intersection of ϕ-prime ideals of R.

Proof. (\Rightarrow) It follows from definition.
(\Leftarrow) Use Lemma 2.2(2).
Corollary 2.4. Let R be a ring, n a positive integer and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup$ $\{\varnothing\}$ a function. If I is an ideal of R such that for every ϕ-prime ideal P of R containing $I, I^{n} \nsubseteq \phi(P)$, then $\sqrt[\phi]{I^{n}}=\sqrt[\phi]{I}$. In particular, $\sqrt[\phi]{I^{n}}=0$ or $\sqrt[\phi_{0}]{I^{n}}=\sqrt[\phi_{0}]{I}$.

Proof. The first part follows from Lemma 2.2. For the "in particular" part, it is clear that if $I^{n}=0$, then $\sqrt[\phi]{I^{n}}=0$, and if $I^{n} \neq 0$, then, by the first part, $\sqrt[\phi_{0}]{I^{n}}=\sqrt[\phi_{0}]{I}$.

Theorem 2.5. Let R be a ring, $\phi, \psi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ two functions such that $\phi \leq \psi$ and $I \in \mathscr{I}(R)$. Then
(1) $\sqrt[\psi]{I} \subseteq \sqrt[\phi]{I}$.
(2) $\sqrt[\psi]{\sqrt[\phi]{I}}=\sqrt[\phi]{\sqrt[\psi]{I}}=\sqrt[\phi]{I}$. In particular, $\sqrt{\sqrt[\psi]{I}}=\sqrt[\psi]{\sqrt{I}}=\sqrt{I}$.
(3) $\sqrt[\lambda_{n}]{\sqrt{\sqrt[\lambda_{2}]{\sqrt[\lambda_{1}]{I}}}}=\sqrt[\phi]{I}$ for $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in\{\phi, \psi\}$ and for $n \geq 2$.
(4) If I is a ϕ-radical ideal of R, then it is ψ-radical.

Proof. (1) Since $\phi \leq \psi$, every ϕ-prime ideal is a ψ-prime ideal. Thus the desired result is clear. (2) By (1), $\sqrt[\phi]{I} \subseteq \sqrt[\phi]{\sqrt[\psi]{I}} \subseteq \sqrt[\phi]{\phi^{I}}$. Hence, by Lemma $2.2(4)$, we have $\sqrt[\phi]{\sqrt[\psi]{I}}=\sqrt[\phi]{I}$. On the other hand, by (1) and Lemma 2.2(4), $\sqrt[\psi]{\sqrt[\phi]{I}} \subseteq \sqrt[\phi]{\sqrt[\phi]{I}}=\sqrt[\phi]{I} \subseteq \sqrt[\psi]{\sqrt[\phi]{I}}$. Thus we have the asserted equality. For "in particular" part, put $\phi=\phi_{\varnothing}$ in the first part. (3) It follows inductively by (2) and Lemma 2.2. (4) It follows directly from (2).

Corollary 2.6. Let R be a ring, I and J ideals of R, and $\phi: \mathscr{I}(R) \rightarrow$ $\mathscr{I}(R) \cup\{\varnothing\}$ a function. Then
(1) $\sqrt[\phi]{I}=R$ if and only if $I=R$.
(2) $\sqrt[\phi]{I+J}=\sqrt[\phi]{\sqrt[\phi]{I}+\sqrt[\phi]{J}}$. In particular, $I+J=R$ if and only if $\sqrt[\phi]{I}+$ $\sqrt[\phi]{J}=R$.
Proof. (1) (\Rightarrow) Since $\sqrt[\phi]{I} \subseteq \sqrt{I}, \sqrt[\phi]{I}=R$ implies that $\sqrt{I}=R$ and this gives that $I=R$. (\Leftarrow) Clear.
(2) Clearly $I+J \subseteq \sqrt[\phi]{I}+\sqrt[\phi]{J} \subseteq \sqrt[\phi]{I+J}$. Now taking ϕ-radical and using Lemma 2.2 give the result.

Let R be a ring and M be an R-module. Then $R_{(+)} M$ with coordinatewise addition, and multiplication $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)$ is a commutative ring with identity called the idealization of M. The prime ideals of $R_{(+)} M$ have the form $P_{(+)} M$ where P is a prime ideal of R [4, Theorem 3.2]. The homogeneous ideals of (the graded ring) $R_{(+)} M$ have the form $I_{(+)} N$, where I is an ideal of R, N is a submodule of M, and $I M \subseteq N[4$, Theorem 3.3]. A ring $R_{(+)} M$ is called a homogeneous ring if every ideal of $R_{(+)} M$ is homogeneous.
Proposition 2.7. Let R be a ring, M an R-module, and $R_{(+)} M$ a homogeneous ring. Let $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ and $\psi: \mathscr{I}\left(R_{(+)} M\right) \rightarrow \mathscr{I}\left(R_{(+)} M\right) \cup$ $\{\varnothing\}$ be two functions such that $\psi\left(I_{(+)} N\right)=\phi(I)_{(+)} N$. Then
(1) If $Q=P_{(+)} N$ is a ψ-prime ideal of $R_{(+)} M$, then P is a ϕ-prime ideal of R.
(2) P is a ϕ-prime ideal of R if and only if $P_{(+)} M$ is a ψ-prime ideal of $R_{(+)} M$.
(3) $\sqrt[\psi]{I_{(+)} M}=\sqrt[\phi]{I_{(+)}}{ }^{M}$.

Proof. (1) Let $r_{1} r_{2} \in P-\phi(P)$ for $r_{1}, r_{2} \in R$. Then $\left(r_{1}, 0\right)\left(r_{2}, 0\right) \in Q-\psi(Q)$. Since Q is ψ-prime, $\left(r_{1}, 0\right) \in Q$ or $\left(r_{2}, 0\right) \in Q$ which implies that $r_{1} \in P$ or $r_{2} \in P$. Thus P is a ϕ prime ideal of R. (2) Let P be a ϕ-prime ideal of $R, Q=P_{(+)} M$ and let $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right) \in Q-\psi(Q)$ for $r_{1}, r_{2} \in R$ and $m_{1}, m_{2} \in M$. Then $r_{1} r_{2} \in P-\phi(P)$. Since P is ϕ-prime, $r_{1} \in P$ or $r_{2} \in P$. Thus $\left(r_{1}, m_{1}\right) \in Q$ or $\left(r_{2}, m_{2}\right) \in Q$. Hence Q is a ψ-prime ideal of $R_{(+)} M$. The converse follows from (1). (3) Let Q be a ψ-prime ideal of $R_{(+)} M$ containing $I_{(+)} M$. Since Q contains $0_{(+)} M, Q=P_{(+)} M$ where P is a ϕ-prime ideal of R containing I by (2). Hence $\sqrt[\phi]{I_{(+)}} M \subseteq \sqrt[\psi]{I_{(+)} M}$. Also, if P is a ϕ-prime
ideal of R containing I, then $P_{(+)} M$ is a ψ-prime ideal containing $I_{(+)} M$. This follows $\sqrt[\psi]{I_{(+)} M} \subseteq \sqrt[\phi]{I_{(+)}}$.

Proposition 2.8. Let R be a ring and $I \in \mathscr{I}^{*}(R)$. Then either $\sqrt[\phi]{I}=\sqrt{I}$ or $(\sqrt[\phi]{I})^{2} \subseteq \phi(P)$ for some ϕ-prime ideal P of R containing I.
Proof. If every ϕ-prime ideal of R containing I is prime, then clearly $\sqrt[\phi]{I}=\sqrt{I}$. Now let P be a ϕ-prime ideal of R containing I which is not prime and let $x, y \in \sqrt[\phi]{I}$. Then $x, y \in P$ and hence $x y \in P^{2} \subseteq \phi(P)$, by [2, Theorem 5]. Thus $(\sqrt[\phi]{I})^{2} \subseteq \phi(P)$.

Corollary 2.9. Let R be a ring, $I \in \mathscr{I}^{*}(R)$ and $\phi \in \mathcal{A}^{*}$. Then either $\sqrt[\phi]{I}=$ \sqrt{I} or $(\sqrt[\phi]{I})^{2} \subseteq P^{2}$ for some ϕ_{2}-prime ideal P of R containing I.
Proof. Let $\sqrt[\phi]{I} \neq \sqrt{I}$. Then there exists a ϕ-prime ideal P of R containing I which is not prime. Since $\phi \in \mathcal{A}^{*}, P$ is a ϕ_{2}-prime ideal, and hence by Proposition 2.8, we have

$$
(\sqrt[\phi]{I})^{2} \subseteq \phi(P) \subseteq \phi_{2}(P)=P^{2}
$$

Corollary 2.10. Let R be a ring, and $I \in \mathscr{I}^{*}(R)$. Then either $\sqrt[\phi]{I}=\sqrt{I}$ or $(\sqrt[\phi]{I})^{2}=0$.
Proof. It is obtained by considering $\phi=\phi_{0}$ in Proposition 2.8.
Proposition 2.11. Let R be a ring, $I \in \mathscr{I}^{*}(R)$ and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ a function such that $\phi_{\omega} \leq \phi \leq \phi_{3}$. Then $\sqrt[\phi]{I}=\sqrt[\phi_{\infty}]{I}$. In particular, if I is a ϕ-radical ideal, then I is ϕ_{ω}-radical.
Proof. Since $\phi_{\omega} \leq \phi$, by Theorem 2.5, $\sqrt[\phi]{I} \subseteq \sqrt[\phi]{I}$. Let P be a ϕ-prime ideal of R containing I. Since $\phi \leq \phi_{3}$, by [2, Corollary 6], P is a ϕ_{ω}-prime ideal and so $\sqrt[\phi \omega]{I} \subseteq \sqrt[\phi]{I}$. The "In particular" part follows immediately from the first part.

The next three propositions, which are easily obtained from some assertions of [2], provide a good supply of examples of ϕ-radical ideals for some $\phi \in \mathcal{A}$.
Proposition 2.12. Let R be a Noetherian integral domain, $I \in \mathscr{I}^{*}(R)$ and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ a function such that $\phi \leq \phi_{3}$. Then $\sqrt[\phi]{I}=\sqrt{I}$. In particular, I is a radical ideal of R if and only if I is a ϕ-radical ideal of R.
Proof. By [2, Corollary 10], P is a prime ideal of R if and only if P is a $\phi_{3^{-}}$ prime ideal of R. Hence we have $\sqrt[\phi]{I}=\sqrt{I}$. Thus $\sqrt[\phi]{I}=\sqrt{I}$ for all functions $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ with $\phi \leq \phi_{3}$, which also yields the "in particular" part.
Example 2.13. Let K be a field, $R=K\left[\left[X^{3}, X^{4}, X^{5}\right]\right]$, and $\mathcal{M}=\left(X^{3}, X^{4}\right.$, X^{5}). By [5, Example, p. 47], $I=\left(X^{3}, X^{4}\right)$ is an \mathcal{M}-primary ideal of R which is ϕ_{2}-prime. On the other hand, as we show in Proposition 2.12, $\sqrt[\phi]{I}=\sqrt{I}$ for all $\phi \in \mathcal{A}-\left\{\phi_{1}, \phi_{2}\right\}$. It follows that $\sqrt[\phi_{3}]{I}=\mathcal{M} \supsetneq I=\sqrt[\phi_{2}]{I}$.

Proposition 2.14. Let R be a PID, $I \in \mathscr{I}^{*}(R)$ and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ a function such that $\phi \leq \phi_{2}$. Then $\sqrt[\phi]{I}=\sqrt{I}$. In particular, I is a radical ideal of R if and only if I is a ϕ-radical ideal of R.

Proof. By [2, Theorem 12], P is a prime ideal of R if and only if P is a ϕ-prime ideal of R, where $\phi \leq \phi_{2}$. Hence the result follows clearly.

Proposition 2.15. Let R be a ring, $I \in \mathscr{I}^{*}(R)$ and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ a function. If R is von Neumann regular or (R, \mathcal{M}) is quasilocal with $\mathcal{M}^{2}=0$, then I is a ϕ-radical ideal for each $\phi_{\omega} \leq \phi \leq \phi_{2}$.

Proof. By [2, Corollary 18].

3. ϕ-top rings

Let R be a ring and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ a function. Recall that the ϕ-prime spectrum of R, denoted by $\operatorname{Spec}_{\phi}(\mathrm{R})$ or simply X_{ϕ}, is the set of all ϕ-prime ideals of R. For an ideal I of R, let $V_{\phi}(I)$ denotes the set of all ϕ-prime ideals P of R such that $P \supseteq I$, i.e., $V_{\phi}(I)=\left\{P \in X_{\phi}: P \supseteq I\right\}$. When $\phi=\phi_{\varnothing}$, we use X and $V(I)$ instead of $X_{\phi_{\varnothing}}$ and $V_{\phi_{\varnothing}}(I)$, respectively. The following lemma collects some elementary facts about the sets $V_{\phi}(I)$.

Lemma 3.1. With the above notations we have,
(1) $V_{\phi}(\varnothing)=X_{\phi}$ and $V_{\phi}(R)=\varnothing$.
(2) $\cap_{\gamma \in \Gamma} V_{\phi}\left(I_{\gamma}\right)=V_{\phi}\left(\sum_{\gamma \in \Gamma} I_{\gamma}\right)$ for every family $I_{\gamma}(\gamma \in \Gamma)$ of ideals of R.
(3) $V_{\phi}(I) \cup V_{\phi}(J) \subseteq V_{\phi}(I \cap J) \subseteq V_{\phi}(I J)$ for any ideals I, J of R.
(4) $V_{\phi}(I)=V_{\phi}(\sqrt[\phi]{I})$ for any ideal I of R.

Proof. Clear.
From the above lemma, we can easily see that there exists a topology, τ_{ϕ} say, on X_{ϕ} having the set $\zeta_{\phi}(R)=\left\{V_{\phi}\left(I_{\gamma}\right) \mid I_{\gamma}\right.$ is an ideal of $\left.R\right\}$ as the collection of all closed sets if and only if $\zeta_{\phi}(R)$ is closed under finite union. When this is the case, we call the ring R a ϕ-top ring. It is well-known that any ring R is a ϕ_{\varnothing}-top ring.

Example 3.2. (1) Let R be a ring which is an injective R-module, and $0 \neq \mathcal{M}$ be a maximal ideal of R with $\mathcal{M}^{2}=0$. By [8, Lemma 2.25], $0 \subsetneq \mathcal{M} \subsetneq R$ is the only ideal of R. Hence we have $X=V(\mathcal{M})=V(0)=\{\mathcal{M}\}$. Moreover, for any $\phi \geq \phi_{0}$, we have $X_{\phi}=\{0, \mathcal{M}\}=\mathscr{I}^{*}(R), V_{\phi}(0)=\mathscr{I}^{*}(R)$ and $V_{\phi}(\mathcal{M})=\{\mathcal{M}\}$. Now, it is easily seen that R is a ϕ-top ring for all $\phi \geq \phi_{0}$ and hence R is a ϕ-top ring for each $\phi \in \mathcal{A}$.
(2) Let R be a valuation ring and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ a function. It is well-known that the ideals of R are totally ordered by inclusion. Hence, for any ideals I and J of $R, V_{\phi}(I) \subseteq V_{\phi}(J)$ or $V_{\phi}(J) \subseteq V_{\phi}(I)$. Therefore, every valuation ring is a ϕ-top ring.
(3) Let $R=K[X, Y] /(X, Y)^{2}$, where K is a field. Then R is not a ϕ-top ring, for each $\phi \geq \phi_{0}$. To see this, assume the contrary. Let $\mathcal{M}=(X, Y) /(X, Y)^{2}$, $I=(\bar{X})$ and $J=(\bar{Y})$. Since $\mathcal{M}^{2}=0$, every proper ideal of R is ϕ_{0}-prime and hence ϕ-prime. Since R is assumed to be ϕ-top, there exists $K \in \mathscr{I}^{*}(R)$ such that $V_{\phi}(I) \cup V_{\phi}(J)=V_{\phi}(K)$. This implies that $I, J \in V_{\phi}(K)$ and hence $I \supseteq K$ and $J \supseteq K$. On the other hand $K \in V_{\phi}(I)$ or $K \in V_{\phi}(J)$. Let $K \in V_{\phi}(I)$. Then $I \subseteq K$ which shows that $I \subseteq K \subseteq J$, a contradiction.
(4) Let R be an integral domain. It is clear that R is a ϕ_{0}-top ring. Now, let I and J be two ideals of R such that $I \nsubseteq J, J \nsubseteq I$ and $I \cap J$ be an almost prime ideal of R. Then $I \cap J \in V_{\phi_{2}}(I \cap J)$ but $I \cap J \notin V_{\phi_{2}}(I)$ and $I \cap J \notin V_{\phi_{2}}(J)$ and hence $I \cap J \notin V_{\phi_{2}}(I) \cup V_{\phi_{2}}(J)$, that is, R is not a ϕ_{2}-top ring.

Proposition 3.3. Let R be a ring, $I, J \in \mathscr{I}(R)$ and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ a function. If for every ϕ-prime ideal P of R containing $I J, I J \nsubseteq \phi(P)$, then R is a ϕ-top ring.

Proof. Let $P \in V_{\phi}(I J)$. Then, by [2, Theorem 13], $P \in V_{\phi}(I)$ or $P \in V_{\phi}(J)$. Thus, by the Lemma 3.1(3), $V_{\phi}(I) \cup V_{\phi}(J)=V_{\phi}(I \cap J)=V_{\phi}(I J)$, that is, R is a ϕ-top ring.
Proposition 3.4. Let R be a ring, $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ be a function and $P \in X_{\phi}-X$. Then $V(\phi(P))=V(P)$.

Proof. Since $\phi(P) \subseteq P$, we have $V(P) \subseteq V(\phi(P))$. On the other hand, since P is not a prime ideal of R, by [2, Theorem 5], $P^{2} \subseteq \phi(P)$. Now, if $Q \in V(\phi(P))$, then $P^{2} \subseteq Q$; hence $Q \supseteq P$. So $V(\phi(P)) \subseteq V(P)$.

Corollary 3.5. Let R be a ring and $P \in X_{\phi_{0}}-X$. Then $V(P)=V(0)$.
Proposition 3.6. Let R be a ring and $\phi, \psi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ be two functions such that $\psi \leq \phi$. If R is a ϕ-top ring, then R is a ψ-top ring.
Proof. For any ideal I of R we have $V_{\psi}(I)=V_{\phi}(I) \cap X_{\psi}$. Now let I_{1} and I_{2} be two ideals of R. Then $V_{\psi}\left(I_{1}\right) \cup V_{\psi}\left(I_{2}\right)=\left(V_{\phi}\left(I_{1}\right) \cap X_{\psi}\right) \cup\left(V_{\phi}\left(I_{2}\right) \cap X_{\psi}\right)=$ $\left(V_{\phi}\left(I_{1}\right) \cup V_{\phi}\left(I_{2}\right)\right) \cap X_{\psi}$. Since R is a ϕ-top ring, there exists an ideal K of R such that $V_{\phi}\left(I_{1}\right) \cup V_{\phi}\left(I_{2}\right)=V_{\phi}(K)$. Thus $V_{\psi}\left(I_{1}\right) \cup V_{\psi}\left(I_{2}\right)=V_{\phi}(K) \cap X_{\psi}=V_{\psi}(K)$. Therefore R is a ψ-top ring.
Theorem 3.7. Let R be a ring and $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ a function. Then R is a ϕ-top ring if and only if $V_{\phi}(I) \cup V_{\phi}(J)=V_{\phi}(I \cap J)$ for any ϕ-radical ideals I and J of R.

Proof. (\Rightarrow) Let P be any ϕ-prime ideal of R and let I and J be ϕ-radical ideals of R such that $I \cap J \subseteq P$. Since R is a ϕ-top ring, there exists an ideal K of R such that $V_{\phi}(I) \cup V_{\phi}(J)=V_{\phi}(K)$. Now, since I is assumed to be ϕ-radical, we have $I=\underset{\gamma \in \Gamma}{\cap} P_{\gamma}$ for some ϕ-prime ideals $P_{\gamma}(\gamma \in \Gamma)$ of R. So $P_{\gamma} \in V_{\phi}(I) \subseteq V_{\phi}(K)$ (for each $\gamma \in \Gamma$) and hence $K \subseteq P_{\gamma}($ for each $\gamma \in \Gamma$) which shows that $K \subseteq \cap_{\gamma \in \Gamma} P_{\gamma}=I$. Similarly, $K \subseteq J$. Thus $K \subseteq I \cap J$ and
therefore $V_{\phi}(I) \cup V_{\phi}(J) \subseteq V_{\phi}(I \cap J) \subseteq V_{\phi}(K)=V_{\phi}(I) \cup V_{\phi}(J)$ which implies that $V_{\phi}(I) \cup V_{\phi}(J)=V_{\phi}(I \cap J) .(\Leftarrow)$ Let I and J be ideals of R. Then, by Lemma 3.1 and hypothesis, we have $V_{\phi}(I) \cup V_{\phi}(J)=V_{\phi}(\sqrt[\phi]{I}) \cup V_{\phi}(\sqrt[\phi]{J})=V_{\phi}(\sqrt[\phi]{I} \cap \sqrt[\phi]{J})$. Thus, R is a ϕ-top ring.
Corollary 3.8. Let R be a ring, and M an R-module. Let $\phi: \mathscr{I}(R) \rightarrow$ $\mathscr{I}(R) \cup\{\varnothing\}$, and $\psi: \mathscr{I}\left(R_{(+)} M\right) \rightarrow \mathscr{I}\left(R_{(+)} M\right) \cup\{\varnothing\}$ be two functions such that $\psi\left(I_{(+)} M\right)=\phi(I)_{(+)} M$. If $R_{(+)} M$ is a ψ-top ring, then R is a ϕ-top ring.
Proof. Let I_{1} and I_{2} be two ϕ-radical ideals of R and $P \in V_{\phi}\left(I_{1} \cap I_{2}\right)$. By Proposition 2.7, $J_{1}=I_{1(+)} M$ and $J_{2}=I_{(+)} M$ are ψ-radical ideals of $R_{(+)} M$, and $P_{(+)} M$ is a ψ-prime ideal of $R_{(+)} M$. So $P_{(+)} M \in V_{\psi}\left(J_{1} \cap J_{2}\right)$. Thus, by Theorem 3.7, $P_{(+)} M \in V_{\psi}\left(J_{1}\right) \cup V_{\psi}\left(J_{2}\right)$. It follows that $P \supseteq I_{1}$ or $P \supseteq I_{2}$. Hence $V_{\phi}\left(I_{1}\right) \cup V_{\phi}\left(I_{2}\right)=V_{\phi}\left(I_{1} \cap I_{2}\right)$, i.e., R is ϕ-top.

Theorem 3.9. Let R_{1} and R_{2} be rings, $\psi_{i}: \mathscr{I}\left(R_{i}\right) \rightarrow \mathscr{I}\left(R_{i}\right) \cup\{\varnothing\}$ (for $i=1,2)$ be functions, and let $\phi=\psi_{1} \times \psi_{2}$. If R_{i} is a ψ_{i}-top ring such that for any non-trivial ideal I_{i} of $R_{i}, \psi_{i}\left(I_{i}\right) \neq I_{i}($ for $i=1,2)$, then $R_{1} \times R_{2}$ is a ϕ-top ring.

Proof. Let $I_{1} \times I_{2}$ and $J_{1} \times J_{2}$ be ideals of $R_{1} \times R_{2}$. Since R_{i} is ψ_{i}-top, $V_{\psi_{i}}\left(I_{i}\right) \cup V_{\psi_{i}}\left(J_{i}\right)=V_{\psi_{i}}\left(K_{i}\right)$ for some ideal K_{i} of $R_{i}(i=1,2)$. Now, since by [2, Theorem 16], every ϕ-prime ideal of $R_{1} \times R_{2}$ has the form $P_{1} \times R_{2}$ or $R_{1} \times P_{2}$, where P_{i} is a ψ_{i}-prime ideal of $R_{i}(i=1,2)$, we have $V_{\phi}\left(I_{1} \times I_{2}\right) \cup V_{\phi}\left(J_{1} \times J_{2}\right)=$ $V_{\phi}\left(K_{1} \times K_{2}\right)$.

A topological space T is Noetherian provided that the open (respectively, closed) subsets of T satisfy the ascending (respectively, descending) chain condition, or the maximal (respectively, minimal) condition [6, §4.2]. Recall that a ring R has Noetherian spectrum (i.e., $\operatorname{Spec}(\mathrm{R})$ is a Noetherian space with the Zariski topology) if and only if the ascending chain condition (ACC) for radical ideals holds [9, p. 631]. We next generalize this result.

Theorem 3.10. Let R be a ϕ-top ring, where $\phi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ is a function. Then $\left(X_{\phi}, \tau_{\phi}\right)$ is a Noetherian space if and only if ACC holds for ϕ radical ideals of R. In particular, if R is a Noetherian ϕ-top ring, then $\left(X_{\phi}, \tau_{\phi}\right)$ is a Noetherian space.

Proof. (\Rightarrow) Let $I_{1} \subseteq I_{2} \subseteq \cdots$ be an ascending chain of ϕ-radical ideals of R. Then we have the descending chain $V_{\phi}\left(I_{1}\right) \supseteq V_{\phi}\left(I_{2}\right) \supseteq \cdots$ of closed subsets of $\left(X_{\phi}, \tau_{\phi}\right)$. Now, by hypothesis, there is a positive integer n such that $V_{\phi}\left(I_{n}\right)=$ $V_{\phi}\left(I_{n+1}\right)=\cdots$. It follows that $\sqrt[\phi]{I_{n}}=\sqrt[\phi]{I_{n+1}}=\cdots$; hence $I_{n}=I_{n+1}=\cdots$.
(\Leftarrow) Let $V_{\phi}\left(I_{1}\right) \supseteq V_{\phi}\left(I_{2}\right) \supseteq \cdots$ be a descending chain of closed subsets of X_{ϕ}. Then $\sqrt[\phi]{I_{1}} \subseteq \sqrt[\phi]{I_{2}} \subseteq \cdots$. Since ACC holds for ϕ-radical ideals, there is a positive integer n such that $\sqrt[\phi]{I_{n}}=\sqrt[\phi]{I_{n+1}}=\cdots$, and hence $V_{\phi}\left(\sqrt[\phi]{I_{n}}\right)=$ $V_{\phi}\left(\sqrt[\phi]{I_{n+1}}\right)=\cdots$. Now, by Lemma 3.1(4), we have $V_{\phi}\left(I_{n}\right)=V_{\phi}\left(I_{n+1}\right)=\cdots$. The "In particular" statement follows immediately from the first part.

Corollary 3.11. Let R be a ring, and let $\phi, \psi: \mathscr{I}(R) \rightarrow \mathscr{I}(R) \cup\{\varnothing\}$ be two functions such that $\phi \leq \psi$. If $\left(X_{\psi}, \tau_{\psi}\right)$ is a Noetherian space, then $\left(X_{\phi}, \tau_{\phi}\right)$ is a Noetherian space, and in particular, R has Noetherian spectrum.
Proof. Apply Theorem 2.5(4) and Theorem 3.10.
Corollary 3.12. Let R be a Noetherian domain. Then $\left(X_{\phi}, \tau_{\phi}\right)$ is a Noetherian space for all $\phi \in \mathcal{A}-\left\{\phi_{1}, \phi_{2}\right\}$. In particular, if R is a PID, then $\left(X_{\phi}, \tau_{\phi}\right)$ is a Noetherian space for all $\phi \in \mathcal{A}-\left\{\phi_{1}\right\}$.
Proof. If R is a Noetherian domain, by [2, Corollary 10], $V_{\phi}(I)=V(I)$ for all $\phi \in \mathcal{A}-\left\{\phi_{1}, \phi_{2}\right\}$, and if R is a PID, by [2, Theorem 12], $V_{\phi}(I)=V(I)$ for all $\phi \in \mathcal{A}-\left\{\phi_{1}\right\}$. Thus R is a ϕ-top ring for these functions ϕ, and hence $\left(X_{\phi}, \tau_{\phi}\right)$ is a Noetherian space by Theorem 3.10.

References

[1] A. G. Agargün, D. D. Anderson, and S. Valdes-Leon, Unique factorization rings with zero divisors, Comm. Algebra, 27 (1999), no. 4, 1967-1974.
[2] D. D. Anderson and M. Bataineh, Generalization of prime ideals, Comm. Algebra 36 (2008), no. 2, 686-696.
[3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
[4] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56.
[5] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra 33 (2005), no. 1, 43-49.
[6] N. Bourbaki, Commutative Algebra, Chap. 1, 2. Paris: Hermann, 1961.
[7] S. Galovich, Unique factorization rings with zero divisors, Math. Mag. 51 (1978), no. 5, 276-283.
[8] S. K Jain, A. K. Srivastava, and A. A. Tuganbaev, Cyclic modules and the structure of rings, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2012.
[9] J. Ohm and R. L. Pendleton, Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631-639.

Javad Bagheri Harehdashti
Department of Mathematics
University of Birjand
Birjand, Iran
E-mail address: j-bagheri@birjand.ac.ir
Hosein Fazaeli Moghimi
Department of Mathematics
University of Birjand
Birjand, Iran
E-mail address: hfazaeli@birjand.ac.ir

[^0]: Received October 9, 2016; Accepted February 16, 2017.
 2010 Mathematics Subject Classification. 13A15, 13A99.
 $K e y$ words and phrases. ϕ-prime ideal, ϕ-radical of an ideal, ϕ-prime spectrum, ϕ-top ring.

