Commun. Korean Math. Soc. **32** (2017), No. 3, pp. 543–552 https://doi.org/10.4134/CKMS.c160211 pISSN: 1225-1763 / eISSN: 2234-3024

A GENERALIZATION OF THE PRIME RADICAL OF IDEALS IN COMMUTATIVE RINGS

JAVAD BAGHERI HAREHDASHTI AND HOSEIN FAZAELI MOGHIMI

ABSTRACT. Let R be a commutative ring with identity, and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ be a function where $\mathscr{I}(R)$ is the set of all ideals of R. Following [2], a proper ideal P of R is called a ϕ -prime ideal if $x, y \in R$ with $xy \in P - \phi(P)$ implies $x \in P$ or $y \in P$. For an ideal I of R, we define the ϕ -radical $\sqrt[4]{I}$ to be the intersection of all ϕ -prime ideals of R containing I, and show that this notion inherits most of the essential properties of the usual notion of radical of an ideal. We also investigate when the set of all ϕ -prime ideals of R, denoted $\operatorname{Spec}_{\phi}(R)$, has a Zariski topology analogous to that of the prime spectrum $\operatorname{Spec}(R)$, and show that this topological space is Noetherian if and only if ϕ -radical ideals of R satisfy the ascending chain condition.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Let R be a ring. We denote the set of all ideals (resp. proper ideals) of R by $\mathscr{I}(R)$ (resp. $\mathscr{I}^*(R)$). And erson and Smith [3], defined a weakly prime ideal, i.e., a proper ideal P of R with the property that for $a, b \in R, 0 \neq ab \in P$ implies $a \in P$ or $b \in P$. Weakly prime elements were introduced by Galovich in [7], and used by Agargün et al. [1], to study the unique factorization in rings with zero-divisors. In studying unique factorization domains, Bhatwadekar and Sharma [5] defined the notion of almost prime ideal, i.e., an ideal $P \in \mathscr{I}^*(R)$ with the property that if $a, b \in R$, $ab \in P - P^2$, then either $a \in P$ or $b \in P$. Thus a weakly prime ideal is almost prime and any proper idempotent ideal is also almost prime. Moreover, an ideal P of R is almost prime if and only if P/P^2 is a weakly prime ideal of R/P^2 . Anderson and Bataineh in [2], extended these concepts to ϕ -prime ideals. Let $\phi: \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ be a function. A proper ideal P of R is called ϕ prime if for $x, y \in R$, $xy \in P - \phi(P)$ implies $x \in P$ or $y \in P$. In fact, P is a ϕ -prime ideal of R if and only if $P/\phi(P)$ is a weakly prime ideal of $R/\phi(P)$.

 $\bigodot 2017$ Korean Mathematical Society

Received October 9, 2016; Accepted February 16, 2017.

²⁰¹⁰ Mathematics Subject Classification. 13A15, 13A99.

Key words and phrases. $\phi\text{-}\mathrm{prime}$ ideal, $\phi\text{-}\mathrm{radical}$ of an ideal, $\phi\text{-}\mathrm{prime}$ spectrum, $\phi\text{-}\mathrm{top}$ ring.

Since $P - \phi(P) = P - (P \cap \phi(P))$, there is no loss of generality in assuming that $\phi(P) \subseteq P$. We henceforth make this assumption. Given two functions $\psi_1, \psi_2 : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$, we define $\psi_1 \leq \psi_2$ if $\psi_1(I) \subseteq \psi_2(I)$ for each $I \in \mathscr{I}(R)$.

For a ring R, we consider the following functions $\phi_{\alpha} : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\emptyset\}$ and the corresponding ϕ_{α} -prime ideals which were introduced in [2] and we will refer to these frequently:

$\phi_{arnothing}$	$\phi(P) = \varnothing$	prime ideal
ϕ_0	$\phi(P) = 0$	weakly prime ideal
ϕ_2	$\phi(P) = P^2$	almost prime ideal
$\phi_n \ (n \ge 2)$	$\phi(P) = P^n$	n-almost prime ideal
ϕ_{ω}	$\phi(P) = \underset{n=1}{\overset{\infty}{\cap}} P^n$	ω -prime ideal
ϕ_1	$\phi(P) = P$	any ideal.
.1 .		

Observe that

(*)

$$\phi_{\varnothing} \le \phi_0 \le \phi_{\omega} \le \dots \le \phi_n \le \dots \le \phi_2 \le \phi_1$$

In the rest of this paper, the set of these functions is denoted by \mathcal{A} , that is $\mathcal{A} = \{\phi_{\varnothing}, \phi_0, \phi_{\omega}, \dots, \phi_n, \dots, \phi_2, \phi_1\}$, and $\mathcal{A}^* = \mathcal{A} - \{\phi_1\}$. Let $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ be a function. We define the ϕ -radical of an ideal I, denoted by $\sqrt[\phi]{I}$, to be the intersection of all ϕ -prime ideals of R containing I. When $\phi = \phi_{\varnothing}$, we use \sqrt{I} instead of $\sqrt[\phi]{\sqrt{I}}$. It follows from (*) that:

 $\sqrt{I} \supseteq \sqrt[\phi_0]{I} \supseteq \sqrt[\phi_0]{I} \supseteq \cdots \supseteq \sqrt[\phi_n+1]{I} \supseteq \sqrt[\phi_n]{I} \supseteq \cdots \supseteq \sqrt[\phi_2]{I} \supseteq \sqrt[\phi_1]{I} = I.$

If $\phi, \psi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ are two functions such that $\phi \leq \psi$, then $\sqrt[\psi]{\sqrt[\psi]{I}} = \sqrt[\psi]{\sqrt[\psi]{I}} = \sqrt[\psi]{I}$ (Theorem 2.5). It is shown that if R is a Noetherian integral domain and $I \in \mathscr{I}^*(R)$, then $\sqrt[\psi]{I} = \sqrt{I}$ for all $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ with $\phi \leq \phi_3$ (Proposition 2.12). In particular, if R is a PID, then $\sqrt[\psi]{I} = \sqrt{I}$ for all $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ with $\phi \leq \phi_2$ (Proposition 2.14).

The set of all ϕ -prime ideals of R is called the ϕ -prime spectrum of R and denoted by $\operatorname{Spec}_{\phi}(\mathbb{R})$ or simply X_{ϕ} . Now, by (*), we have:

 $X_{\phi_{\varnothing}} \subseteq X_{\phi_0} \subseteq X_{\phi_\omega} \subseteq \dots \subseteq X_{\phi_{n+1}} \subseteq X_{\phi_n} \subseteq \dots \subseteq X_{\phi_2} \subseteq X_{\phi_1} = \mathscr{I}^*(R).$

In particular, if $\phi = \phi_{\emptyset}$, then $\operatorname{Spec}_{\phi}(R) = \operatorname{Spec}(R)$ and if $\phi = \phi_{1}$, then Spec $_{\phi}(R) = \mathscr{I}^{*}(R)$. For any ideal I of R we define $V_{\phi}(I)$ to be the set of all ϕ -prime ideals of R containing I. Of course, $V_{\phi}(R)$ is just the empty set and $V_{\phi}(0)$ is X_{ϕ} . Note that for any family of ideals $\{I_{\gamma} | \gamma \in \Gamma\}$ of R, $\bigcap_{\gamma \in \Gamma} V_{\phi}(I_{\gamma}) =$ $V_{\phi}(\sum_{\gamma \in \Gamma} I_{\gamma})$. Thus if $\zeta_{\phi}(R)$ denotes the collections of all subsets $V_{\phi}(I)$ of X_{ϕ} , then $\zeta_{\phi}(R)$ contains the empty set and X_{ϕ} , and $\zeta_{\phi}(R)$ is closed under arbitrary

intersections. We shall say R is a ring with a ϕ -Zariski topology, or a ϕ -top ring for short, if $\zeta_{\phi}(R)$ is closed under finite union, for in this case $\zeta_{\phi}(R)$ satisfies the

axioms for the closed sets of a topological space. In this paper, we investigate the behaviour of ϕ -top rings under the idealization of a module and finite direct products. In particular, we study this topological space from the point of view of Noetherian spaces. It is shown that, for a ϕ -top ring R, X_{ϕ} with ϕ -Zariski topology is a Noetherian space if and only if ascending chain condition holds for ϕ -radical ideals of R (Theorem 3.10).

2. ϕ -radical of ideals

Let R be a ring and I be an ideal of R. It is well-known that the radical of I is the intersection of all prime ideals of R containing I and characterized as the set of all $a \in R$ for which $a^n \in I$ for some positive integer n. A natural generalization of this notion is the following.

Definition. Let R be a ring, I an ideal of R and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ be a function. The ϕ -radical of I, denoted by $\sqrt[\phi]{I}$, is defined to be the intersection of all ϕ -prime ideals of R containing I. In other words,

$$\sqrt[\varphi]{I} = \cap \{ P \in \operatorname{Spec}_{\phi}(\mathbf{R}) : P \supseteq I \}.$$

Moreover, I is called a ϕ -radical ideal if $\sqrt[\phi]{I} = I$.

We note that, by definition, an ideal I of R is a $\phi_{\varnothing}\text{-radical ideal if and only if }I$ is a radical ideal.

Example 2.1. In this example we compute and compare the ϕ -radical of some ideals for some $\phi \in \mathcal{A}$.

(1) Let $R = \mathbb{Z}_4$, $0 = (\overline{0})$, and $P = (\overline{2})$. Then $\sqrt{0} = \sqrt[\phi]{\sqrt{0}} = P \supset 0 = \sqrt[\phi]{\sqrt{0}}.$

This also shows that 0 is a ϕ_0 -radical ideal of R which is not radical.

(2) Let $R = \mathbb{Z}_{12}$, $0 = (\overline{0})$, $P_1 = (\overline{2})$, $P_2 = (\overline{3})$, $I = (\overline{4})$, and $J = (\overline{6})$. Then $\mathscr{I}^*(R) = \{0, I, J, P_1, P_2\}$, $X = X_{\phi_{\varnothing}} = \{P_1, P_2\}$, $X_{\phi_0} = \{0, P_1, P_2\}$ and $X_{\phi_2} = \{0, P_1, P_2, I\}$. Hence we have

$${}^{\phi_2}\sqrt{0} = {}^{\phi_0}\sqrt{0} = 0 \subsetneq \sqrt{0} = P_1 \cap P_2 = J , \; {}^{\phi_2}\sqrt{I} = I \subsetneq {}^{\phi_0}\sqrt{I} = \sqrt{I} = P_1$$

and

$$\sqrt[\phi_2]{J} = \sqrt[\phi_0]{J} = \sqrt{J} = P_1 \cap P_2 = J.$$

(3) Let (R, \mathcal{M}) be a quasilocal ring with $\mathcal{M}^2 = 0$. Let $I \subset \mathcal{M}$. Then by [3, Example 12], the $\mathcal{M}[X]$ -primary ideal I[X] of R[X] is weakly prime. Hence we have

$$\mathcal{M}[X] = \sqrt{I[X]} \supset I[X] = \sqrt[\phi_0]{I[X]}.$$

Thus I[X] is a ϕ -radical ideal of R[X] for all $\phi \in \mathcal{A} - \{\phi_{\varnothing}\}$.

(4) Let S be a ring such that $\sqrt{0} \neq 0$, T a ring and $R = S \times T$. Let $I = 0 \times T$. Then $\sqrt[\phi]{\sqrt{I}} \subsetneq \sqrt[\phi]{\sqrt{I}}$. In fact, the weakly prime ideals of R containing I are exactly the prime ideals of R containing I [3, Theorem 7]. Hence $\sqrt[\phi]{\sqrt{I}} = \sqrt{I} = \sqrt{0} \times T \supsetneq 0 \times T = I$. On the other hand, since

0 is a weakly prime ideal, $I = 0 \times T$ is a ϕ_{ω} -prime ideal of R, by [2, Theorem 8] and hence $\sqrt[\phi]{VI} = I$.

Lemma 2.2. Let R be a ring, $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\emptyset\}$ a function and $I, J \in \mathscr{I}(R)$. Then

- (1) If $I \subseteq J$, then $\sqrt[\phi]{I} \subseteq \sqrt[\phi]{J}$. (1) $I_{\gamma} = I_{\gamma}$, $I_{\gamma} = I_{\gamma}$,
- nite set $\{I_1, \ldots, I_n\}$ of ideals of R, and the equality holds if $I_1 I_2 \cdots I_n \not\subseteq$ $\phi(P)$ for all ϕ -prime ideals P of R containing $I_1I_2\cdots I_n$.

(4)
$$\sqrt[\varphi]{V} \sqrt[\varphi]{I} = \sqrt[\varphi]{I}.$$

Proof. (1) It is clear, since every ϕ -prime ideal P of R containing J contains also I. (2) It is a direct result of (1). (3) Given inclusions are clear by (1). Let P be a ϕ -prime ideal of R containing $I_1 I_2 \cdots I_n$. By assumption, $I_1 I_2 \cdots I_n \not\subseteq \phi(P)$ and hence $I_{i_1}I_{i_2}\cdots I_{i_j} \not\subseteq \phi(P)$ for all $1 \leq j \leq n$. Now [2, Theorem 13] gives the result. (4) Since $I \subseteq \sqrt[\phi]{I}$, by (1), $\sqrt[\phi]{I} \subseteq \sqrt[\phi]{\sqrt[\phi]{I}}$. The reverse containment follows from the fact that every ϕ -prime ideal of R containing I contains also $\sqrt[\phi]{I}$.

Corollary 2.3. Let R be a ring and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\emptyset\}$ be a function. Then I is a ϕ -radical ideal of R if and only if I is an intersection of ϕ -prime ideals of R.

Proof. (\Rightarrow) It follows from definition. (\Leftarrow) Use Lemma 2.2(2).

Corollary 2.4. Let R be a ring, n a positive integer and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup$ $\{\emptyset\}$ a function. If I is an ideal of R such that for every ϕ -prime ideal P of R containing I, $I^n \not\subseteq \phi(P)$, then $\sqrt[\phi]{I^n} = \sqrt[\phi]{I}$. In particular, $\sqrt[\phi]{I^n} = 0$ or $\sqrt[\phi_0]{I^n} = \sqrt[\phi_0]{I}.$

Proof. The first part follows from Lemma 2.2. For the "in particular" part, it is clear that if $I^n = 0$, then $\sqrt[\phi_0]{I^n} = 0$, and if $I^n \neq 0$, then, by the first part, $\sqrt[\phi_0]{I^n} = \sqrt[\phi_0]{I}.$

Theorem 2.5. Let R be a ring, $\phi, \psi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\emptyset\}$ two functions such that $\phi \leq \psi$ and $I \in \mathscr{I}(R)$. Then

- (1) $\sqrt[\psi]{I} \subseteq \sqrt[\phi]{I}$. (1) $\sqrt{I} \geq \sqrt{I}$. (2) $\sqrt[\psi]{\sqrt[\psi]{\overline{I}}} = \sqrt[\psi]{\sqrt[\psi]{\overline{I}}} = \sqrt[\psi]{\overline{I}}$. In particular, $\sqrt{\sqrt[\psi]{\overline{I}}} = \sqrt[\psi]{\sqrt{\overline{I}}} = \sqrt{\overline{I}}$. (3) $\sqrt[\lambda_n]{\sqrt[\chi]{\sqrt[\chi_n]{\overline{V}}}} = \sqrt[\psi]{\overline{I}}$ for $\lambda_1, \lambda_2, \dots, \lambda_n \in \{\phi, \psi\}$ and for $n \ge 2$. (4) If I is a ϕ -radical ideal of R, then it is ψ -radical.

Proof. (1) Since $\phi \leq \psi$, every ϕ -prime ideal is a ψ -prime ideal. Thus the desired result is clear. (2) By (1), $\sqrt[\psi]{I} \subseteq \sqrt[\psi]{\sqrt[\psi]{I}} \subseteq \sqrt[\psi]{\sqrt[\psi]{I}}$. Hence, by Lemma 2.2(4), we have $\sqrt[\psi]{\sqrt[\psi]{I}} = \sqrt[\psi]{\sqrt[\psi]{I}}$. On the other hand, by (1) and Lemma 2.2(4), $\sqrt[\psi]{\sqrt[\psi]{V}{I}} \subseteq \sqrt[\psi]{\sqrt[\psi]{V}{I}} = \sqrt[\psi]{\sqrt[\psi]{V}{I}}$. Thus we have the asserted equality. For "in particular" part, put $\phi = \phi_{\emptyset}$ in the first part. (3) It follows inductively by (2) and Lemma 2.2. (4) It follows directly from (2).

Corollary 2.6. Let R be a ring, I and J ideals of R, and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ a function. Then

- (1) $\sqrt[\phi]{I} = R$ if and only if I = R.
- (2) $\sqrt[\phi]{I+J} = \sqrt[\phi]{\sqrt[\phi]{I} + \sqrt[\phi]{J}}$. In particular, I+J = R if and only if $\sqrt[\phi]{I} + \sqrt[\phi]{J} = R$.

Proof. (1) (\Rightarrow) Since $\sqrt[\phi]{I} \subseteq \sqrt{I}$, $\sqrt[\phi]{I} = R$ implies that $\sqrt{I} = R$ and this gives that I = R. (\Leftarrow) Clear.

(2) Clearly $I + J \subseteq \sqrt[\phi]{I} + \sqrt[\phi]{J} \subseteq \sqrt[\phi]{I + J}$. Now taking ϕ -radical and using Lemma 2.2 give the result.

Let R be a ring and M be an R-module. Then $R_{(+)}M$ with coordinatewise addition, and multiplication $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)$ is a commutative ring with identity called the idealization of M. The prime ideals of $R_{(+)}M$ have the form $P_{(+)}M$ where P is a prime ideal of R [4, Theorem 3.2]. The homogeneous ideals of (the graded ring) $R_{(+)}M$ have the form $I_{(+)}N$, where I is an ideal of R, N is a submodule of M, and $IM \subseteq N$ [4, Theorem 3.3]. A ring $R_{(+)}M$ is called a homogeneous ring if every ideal of $R_{(+)}M$ is homogeneous.

Proposition 2.7. Let R be a ring, M an R-module, and $R_{(+)}M$ a homogeneous ring. Let $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ and $\psi : \mathscr{I}(R_{(+)}M) \to \mathscr{I}(R_{(+)}M) \cup \{\varnothing\}$ be two functions such that $\psi(I_{(+)}N) = \phi(I)_{(+)}N$. Then

- (1) If $Q = P_{(+)}N$ is a ψ -prime ideal of $R_{(+)}M$, then P is a ϕ -prime ideal of R.
- (2) P is a ϕ -prime ideal of R if and only if $P_{(+)}M$ is a ψ -prime ideal of $R_{(+)}M$.
- (3) $\sqrt[\psi]{I_{(+)}M} = \sqrt[\phi]{I_{(+)}M}.$

Proof. (1) Let $r_1r_2 \in P - \phi(P)$ for $r_1, r_2 \in R$. Then $(r_1, 0)(r_2, 0) \in Q - \psi(Q)$. Since Q is ψ -prime, $(r_1, 0) \in Q$ or $(r_2, 0) \in Q$ which implies that $r_1 \in P$ or $r_2 \in P$. Thus P is a ϕ prime ideal of R. (2) Let P be a ϕ -prime ideal of R, $Q = P_{(+)}M$ and let $(r_1, m_1)(r_2, m_2) \in Q - \psi(Q)$ for $r_1, r_2 \in R$ and $m_1, m_2 \in M$. Then $r_1r_2 \in P - \phi(P)$. Since P is ϕ -prime, $r_1 \in P$ or $r_2 \in P$. Thus $(r_1, m_1) \in Q$ or $(r_2, m_2) \in Q$. Hence Q is a ψ -prime ideal of $R_{(+)}M$. The converse follows from (1). (3) Let Q be a ψ -prime ideal of $R_{(+)}M$ containing $I_{(+)}M$. Since Q contains $0_{(+)}M$, $Q = P_{(+)}M$ where P is a ϕ -prime ideal of R containing I by (2). Hence $\sqrt[\phi]{I_{(+)}M} \subseteq \sqrt[\phi]{V_{(+)}M}$. Also, if P is a ϕ -prime ideal of R containing I, then $P_{(+)}M$ is a ψ -prime ideal containing $I_{(+)}M$. This follows $\sqrt[\psi]{I_{(+)}M} \subseteq \sqrt[\psi]{I_{(+)}M}$.

Proposition 2.8. Let R be a ring and $I \in \mathscr{I}^*(R)$. Then either $\sqrt[4]{I} = \sqrt{I}$ or $(\sqrt[4]{I})^2 \subseteq \phi(P)$ for some ϕ -prime ideal P of R containing I.

Proof. If every ϕ -prime ideal of R containing I is prime, then clearly $\sqrt[\phi]{I} = \sqrt{I}$. Now let P be a ϕ -prime ideal of R containing I which is not prime and let $x, y \in \sqrt[\phi]{I}$. Then $x, y \in P$ and hence $xy \in P^2 \subseteq \phi(P)$, by [2, Theorem 5]. Thus $(\sqrt[\phi]{I})^2 \subseteq \phi(P)$.

Corollary 2.9. Let R be a ring, $I \in \mathscr{I}^*(R)$ and $\phi \in \mathcal{A}^*$. Then either $\sqrt[\phi]{I} = \sqrt{I}$ or $(\sqrt[\phi]{I})^2 \subseteq P^2$ for some ϕ_2 -prime ideal P of R containing I.

Proof. Let $\sqrt[\phi]{I} \neq \sqrt{I}$. Then there exists a ϕ -prime ideal P of R containing I which is not prime. Since $\phi \in \mathcal{A}^*$, P is a ϕ_2 -prime ideal, and hence by Proposition 2.8, we have

$$(\sqrt[\phi]{I})^2 \subseteq \phi(P) \subseteq \phi_2(P) = P^2.$$

Corollary 2.10. Let R be a ring, and $I \in \mathscr{I}^*(R)$. Then either $\sqrt[\phi_0]{I} = \sqrt{I}$ or $(\sqrt[\phi_0]{I})^2 = 0$.

Proof. It is obtained by considering $\phi = \phi_0$ in Proposition 2.8.

Proposition 2.11. Let R be a ring, $I \in \mathscr{I}^*(R)$ and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\emptyset\}$ a function such that $\phi_{\omega} \leq \phi \leq \phi_3$. Then $\sqrt[\phi]{I} = \sqrt[\phi]{\sqrt{I}}$. In particular, if I is a ϕ -radical ideal, then I is ϕ_{ω} -radical.

Proof. Since $\phi_{\omega} \leq \phi$, by Theorem 2.5, $\sqrt[\phi]{I} \subseteq \sqrt[\phi_w]{I}$. Let *P* be a ϕ -prime ideal of *R* containing *I*. Since $\phi \leq \phi_3$, by [2, Corollary 6], *P* is a ϕ_{ω} -prime ideal and so $\sqrt[\phi_w]{I} \subseteq \sqrt[\phi]{I}$. The "In particular" part follows immediately from the first part.

The next three propositions, which are easily obtained from some assertions of [2], provide a good supply of examples of ϕ -radical ideals for some $\phi \in \mathcal{A}$.

Proposition 2.12. Let R be a Noetherian integral domain, $I \in \mathscr{I}^*(R)$ and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ a function such that $\phi \leq \phi_3$. Then $\sqrt[\phi]{I} = \sqrt{I}$. In particular, I is a radical ideal of R if and only if I is a ϕ -radical ideal of R.

Proof. By [2, Corollary 10], P is a prime ideal of R if and only if P is a ϕ_3 -prime ideal of R. Hence we have $\sqrt[\phi_3]{I} = \sqrt{I}$. Thus $\sqrt[\phi]{I} = \sqrt{I}$ for all functions $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ with $\phi \leq \phi_3$, which also yields the "in particular" part. \Box

Example 2.13. Let K be a field, $R = K[[X^3, X^4, X^5]]$, and $\mathcal{M} = (X^3, X^4, X^5)$. By [5, Example, p. 47], $I = (X^3, X^4)$ is an \mathcal{M} -primary ideal of R which is ϕ_2 -prime. On the other hand, as we show in Proposition 2.12, $\sqrt[\phi]{I} = \sqrt{I}$ for all $\phi \in \mathcal{A} - \{\phi_1, \phi_2\}$. It follows that $\sqrt[\phi]{I} = \mathcal{M} \supseteq I = \sqrt[\phi]{I}$.

Proposition 2.14. Let R be a PID, $I \in \mathscr{I}^*(R)$ and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\emptyset\}$ a function such that $\phi \leq \phi_2$. Then $\sqrt[\phi]{I} = \sqrt{I}$. In particular, I is a radical ideal of R if and only if I is a ϕ -radical ideal of R.

Proof. By [2, Theorem 12], P is a prime ideal of R if and only if P is a ϕ -prime ideal of R, where $\phi \leq \phi_2$. Hence the result follows clearly.

Proposition 2.15. Let R be a ring, $I \in \mathscr{I}^*(R)$ and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ a function. If R is von Neumann regular or (R, \mathcal{M}) is quasilocal with $\mathcal{M}^2 = 0$, then I is a ϕ -radical ideal for each $\phi_{\omega} \leq \phi \leq \phi_2$.

Proof. By [2, Corollary 18].

3. ϕ -top rings

Let R be a ring and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ a function. Recall that the ϕ -prime spectrum of R, denoted by $\operatorname{Spec}_{\phi}(R)$ or simply X_{ϕ} , is the set of all ϕ -prime ideals of R. For an ideal I of R, let $V_{\phi}(I)$ denotes the set of all ϕ -prime ideals P of R such that $P \supseteq I$, i.e., $V_{\phi}(I) = \{P \in X_{\phi} : P \supseteq I\}$. When $\phi = \phi_{\varnothing}$, we use X and V(I) instead of $X_{\phi_{\varnothing}}$ and $V_{\phi_{\varnothing}}(I)$, respectively. The following lemma collects some elementary facts about the sets $V_{\phi}(I)$.

Lemma 3.1. With the above notations we have,

- (1) $V_{\phi}(\emptyset) = X_{\phi} \text{ and } V_{\phi}(R) = \emptyset.$
- (2) $\bigcap_{\gamma \in \Gamma} V_{\phi}(I_{\gamma}) = V_{\phi}(\sum_{\gamma \in \Gamma} I_{\gamma}) \text{ for every family } I_{\gamma}(\gamma \in \Gamma) \text{ of ideals of } R.$
- (3) $V_{\phi}(I) \cup V_{\phi}(J) \subseteq V_{\phi}(I \cap J) \subseteq V_{\phi}(IJ)$ for any ideals I, J of R.
- (4) $V_{\phi}(I) = V_{\phi}(\sqrt[\phi]{I})$ for any ideal I of R.

Proof. Clear.

From the above lemma, we can easily see that there exists a topology, τ_{ϕ} say, on X_{ϕ} having the set $\zeta_{\phi}(R) = \{V_{\phi}(I_{\gamma}) | I_{\gamma} \text{ is an ideal of } R\}$ as the collection of all closed sets if and only if $\zeta_{\phi}(R)$ is closed under finite union. When this is the case, we call the ring R a ϕ -top ring. It is well-known that any ring R is a ϕ_{\varnothing} -top ring.

Example 3.2. (1) Let R be a ring which is an injective R-module, and $0 \neq \mathcal{M}$ be a maximal ideal of R with $\mathcal{M}^2 = 0$. By [8, Lemma 2.25], $0 \subsetneq \mathcal{M} \subsetneq R$ is the only ideal of R. Hence we have $X = V(\mathcal{M}) = V(0) = \{\mathcal{M}\}$. Moreover, for any $\phi \ge \phi_0$, we have $X_{\phi} = \{0, \mathcal{M}\} = \mathscr{I}^*(R), V_{\phi}(0) = \mathscr{I}^*(R)$ and $V_{\phi}(\mathcal{M}) = \{\mathcal{M}\}$. Now, it is easily seen that R is a ϕ -top ring for all $\phi \ge \phi_0$ and hence R is a ϕ -top ring for each $\phi \in \mathcal{A}$.

(2) Let R be a valuation ring and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\emptyset\}$ a function. It is well-known that the ideals of R are totally ordered by inclusion. Hence, for any ideals I and J of R, $V_{\phi}(I) \subseteq V_{\phi}(J)$ or $V_{\phi}(J) \subseteq V_{\phi}(I)$. Therefore, every valuation ring is a ϕ -top ring.

549

(3) Let $R = K[X,Y]/(X,Y)^2$, where K is a field. Then R is not a ϕ -top ring, for each $\phi \ge \phi_0$. To see this, assume the contrary. Let $\mathcal{M} = (X,Y)/(X,Y)^2$, $I = (\bar{X})$ and $J = (\bar{Y})$. Since $\mathcal{M}^2 = 0$, every proper ideal of R is ϕ_0 -prime and hence ϕ -prime. Since R is assumed to be ϕ -top, there exists $K \in \mathscr{I}^*(R)$ such that $V_{\phi}(I) \cup V_{\phi}(J) = V_{\phi}(K)$. This implies that $I, J \in V_{\phi}(K)$ and hence $I \supseteq K$ and $J \supseteq K$. On the other hand $K \in V_{\phi}(I)$ or $K \in V_{\phi}(J)$. Let $K \in V_{\phi}(I)$. Then $I \subseteq K$ which shows that $I \subseteq K \subseteq J$, a contradiction.

(4) Let R be an integral domain. It is clear that R is a ϕ_0 -top ring. Now, let I and J be two ideals of R such that $I \nsubseteq J$, $J \nsubseteq I$ and $I \cap J$ be an almost prime ideal of R. Then $I \cap J \in V_{\phi_2}(I \cap J)$ but $I \cap J \notin V_{\phi_2}(I)$ and $I \cap J \notin V_{\phi_2}(J)$ and hence $I \cap J \notin V_{\phi_2}(I) \cup V_{\phi_2}(J)$, that is, R is not a ϕ_2 -top ring.

Proposition 3.3. Let R be a ring, $I, J \in \mathscr{I}(R)$ and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\emptyset\}$ a function. If for every ϕ -prime ideal P of R containing IJ, $IJ \nsubseteq \phi(P)$, then R is a ϕ -top ring.

Proof. Let $P \in V_{\phi}(IJ)$. Then, by [2, Theorem 13], $P \in V_{\phi}(I)$ or $P \in V_{\phi}(J)$. Thus, by the Lemma 3.1(3), $V_{\phi}(I) \cup V_{\phi}(J) = V_{\phi}(I \cap J) = V_{\phi}(IJ)$, that is, R is a ϕ -top ring. \Box

Proposition 3.4. Let R be a ring, $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ be a function and $P \in X_{\phi} - X$. Then $V(\phi(P)) = V(P)$.

Proof. Since $\phi(P) \subseteq P$, we have $V(P) \subseteq V(\phi(P))$. On the other hand, since P is not a prime ideal of R, by [2, Theorem 5], $P^2 \subseteq \phi(P)$. Now, if $Q \in V(\phi(P))$, then $P^2 \subseteq Q$; hence $Q \supseteq P$. So $V(\phi(P)) \subseteq V(P)$.

Corollary 3.5. Let R be a ring and $P \in X_{\phi_0} - X$. Then V(P) = V(0).

Proposition 3.6. Let R be a ring and $\phi, \psi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ be two functions such that $\psi \leq \phi$. If R is a ϕ -top ring, then R is a ψ -top ring.

Proof. For any ideal I of R we have $V_{\psi}(I) = V_{\phi}(I) \cap X_{\psi}$. Now let I_1 and I_2 be two ideals of R. Then $V_{\psi}(I_1) \cup V_{\psi}(I_2) = (V_{\phi}(I_1) \cap X_{\psi}) \cup (V_{\phi}(I_2) \cap X_{\psi}) = (V_{\phi}(I_1) \cup V_{\phi}(I_2)) \cap X_{\psi}$. Since R is a ϕ -top ring, there exists an ideal K of R such that $V_{\phi}(I_1) \cup V_{\phi}(I_2) = V_{\phi}(K)$. Thus $V_{\psi}(I_1) \cup V_{\psi}(I_2) = V_{\phi}(K) \cap X_{\psi} = V_{\psi}(K)$. Therefore R is a ψ -top ring.

Theorem 3.7. Let R be a ring and $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ a function. Then R is a ϕ -top ring if and only if $V_{\phi}(I) \cup V_{\phi}(J) = V_{\phi}(I \cap J)$ for any ϕ -radical ideals I and J of R.

Proof. (\Rightarrow) Let P be any ϕ -prime ideal of R and let I and J be ϕ -radical ideals of R such that $I \cap J \subseteq P$. Since R is a ϕ -top ring, there exists an ideal K of R such that $V_{\phi}(I) \cup V_{\phi}(J) = V_{\phi}(K)$. Now, since I is assumed to be ϕ -radical, we have $I = \bigcap_{\gamma \in \Gamma} P_{\gamma}$ for some ϕ -prime ideals $P_{\gamma}(\gamma \in \Gamma)$ of R. So $P_{\gamma} \in V_{\phi}(I) \subseteq V_{\phi}(K)$ (for each $\gamma \in \Gamma$) and hence $K \subseteq P_{\gamma}$ (for each $\gamma \in \Gamma$) which shows that $K \subseteq \bigcap_{\gamma \in \Gamma} P_{\gamma} = I$. Similarly, $K \subseteq J$. Thus $K \subseteq I \cap J$ and

therefore $V_{\phi}(I) \cup V_{\phi}(J) \subseteq V_{\phi}(I \cap J) \subseteq V_{\phi}(K) = V_{\phi}(I) \cup V_{\phi}(J)$ which implies that $V_{\phi}(I) \cup V_{\phi}(J) = V_{\phi}(I \cap J)$. (\Leftarrow) Let I and J be ideals of R. Then, by Lemma 3.1 and hypothesis, we have $V_{\phi}(I) \cup V_{\phi}(J) = V_{\phi}(\sqrt[4]{I}) \cup V_{\phi}(\sqrt[4]{J}) = V_{\phi}(\sqrt[4]{I} \cap \sqrt[4]{J})$. Thus, R is a ϕ -top ring.

Corollary 3.8. Let R be a ring, and M an R-module. Let $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\emptyset\}$, and $\psi : \mathscr{I}(R_{(+)}M) \to \mathscr{I}(R_{(+)}M) \cup \{\emptyset\}$ be two functions such that $\psi(I_{(+)}M) = \phi(I)_{(+)}M$. If $R_{(+)}M$ is a ψ -top ring, then R is a ϕ -top ring.

Proof. Let I_1 and I_2 be two ϕ -radical ideals of R and $P \in V_{\phi}(I_1 \cap I_2)$. By Proposition 2.7, $J_1 = I_{1(+)}M$ and $J_2 = I_{2(+)}M$ are ψ -radical ideals of $R_{(+)}M$, and $P_{(+)}M$ is a ψ -prime ideal of $R_{(+)}M$. So $P_{(+)}M \in V_{\psi}(J_1 \cap J_2)$. Thus, by Theorem 3.7, $P_{(+)}M \in V_{\psi}(J_1) \cup V_{\psi}(J_2)$. It follows that $P \supseteq I_1$ or $P \supseteq I_2$. Hence $V_{\phi}(I_1) \cup V_{\phi}(I_2) = V_{\phi}(I_1 \cap I_2)$, i.e., R is ϕ -top.

Theorem 3.9. Let R_1 and R_2 be rings, $\psi_i : \mathscr{I}(R_i) \to \mathscr{I}(R_i) \cup \{\emptyset\}$ (for i = 1, 2) be functions, and let $\phi = \psi_1 \times \psi_2$. If R_i is a ψ_i -top ring such that for any non-trivial ideal I_i of R_i , $\psi_i(I_i) \neq I_i$ (for i = 1, 2), then $R_1 \times R_2$ is a ϕ -top ring.

Proof. Let $I_1 \times I_2$ and $J_1 \times J_2$ be ideals of $R_1 \times R_2$. Since R_i is ψ_i -top, $V_{\psi_i}(I_i) \cup V_{\psi_i}(J_i) = V_{\psi_i}(K_i)$ for some ideal K_i of R_i (i = 1, 2). Now, since by [2, Theorem 16], every ϕ -prime ideal of $R_1 \times R_2$ has the form $P_1 \times R_2$ or $R_1 \times P_2$, where P_i is a ψ_i -prime ideal of R_i (i = 1, 2), we have $V_{\phi}(I_1 \times I_2) \cup V_{\phi}(J_1 \times J_2) =$ $V_{\phi}(K_1 \times K_2)$.

A topological space T is Noetherian provided that the open (respectively, closed) subsets of T satisfy the ascending (respectively, descending) chain condition, or the maximal (respectively, minimal) condition [6, §4.2]. Recall that a ring R has Noetherian spectrum (i.e., Spec(R) is a Noetherian space with the Zariski topology) if and only if the ascending chain condition (ACC) for radical ideals holds [9, p. 631]. We next generalize this result.

Theorem 3.10. Let R be a ϕ -top ring, where $\phi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\emptyset\}$ is a function. Then (X_{ϕ}, τ_{ϕ}) is a Noetherian space if and only if ACC holds for ϕ -radical ideals of R. In particular, if R is a Noetherian ϕ -top ring, then (X_{ϕ}, τ_{ϕ}) is a Noetherian space.

Proof. (\Rightarrow) Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of ϕ -radical ideals of R. Then we have the descending chain $V_{\phi}(I_1) \supseteq V_{\phi}(I_2) \supseteq \cdots$ of closed subsets of (X_{ϕ}, τ_{ϕ}) . Now, by hypothesis, there is a positive integer n such that $V_{\phi}(I_n) = V_{\phi}(I_{n+1}) = \cdots$. It follows that $\sqrt[\phi]{I_n} = \sqrt[\phi]{I_{n+1}} = \cdots$; hence $I_n = I_{n+1} = \cdots$. (\Leftarrow) Let $V_{\phi}(I_1) \supseteq V_{\phi}(I_2) \supseteq \cdots$ be a descending chain of closed subsets of X_{ϕ} . Then $\sqrt[\phi]{I_1} \subseteq \sqrt[\phi]{I_2} \subseteq \cdots$. Since ACC holds for ϕ -radical ideals, there is a positive integer n such that $\sqrt[\phi]{I_n} = \sqrt[\phi]{I_{n+1}} = \cdots$, and hence $V_{\phi}(\sqrt[\phi]{I_n}) = V_{\phi}(\sqrt[\phi]{I_{n+1}}) = \cdots$. Now, by Lemma 3.1(4), we have $V_{\phi}(I_n) = V_{\phi}(I_{n+1}) = \cdots$.

The "In particular" statement follows immediately from the first part. \Box

Corollary 3.11. Let R be a ring, and let $\phi, \psi : \mathscr{I}(R) \to \mathscr{I}(R) \cup \{\varnothing\}$ be two functions such that $\phi \leq \psi$. If (X_{ψ}, τ_{ψ}) is a Noetherian space, then (X_{ϕ}, τ_{ϕ}) is a Noetherian space, and in particular, R has Noetherian spectrum.

Proof. Apply Theorem 2.5(4) and Theorem 3.10.

Corollary 3.12. Let R be a Noetherian domain. Then (X_{ϕ}, τ_{ϕ}) is a Noetherian space for all $\phi \in \mathcal{A} - \{\phi_1, \phi_2\}$. In particular, if R is a PID, then (X_{ϕ}, τ_{ϕ}) is a Noetherian space for all $\phi \in \mathcal{A} - \{\phi_1\}$.

Proof. If R is a Noetherian domain, by [2, Corollary 10], $V_{\phi}(I) = V(I)$ for all $\phi \in \mathcal{A} - \{\phi_1, \phi_2\}$, and if R is a PID, by [2, Theorem 12], $V_{\phi}(I) = V(I)$ for all $\phi \in \mathcal{A} - \{\phi_1\}$. Thus R is a ϕ -top ring for these functions ϕ , and hence (X_{ϕ}, τ_{ϕ}) is a Noetherian space by Theorem 3.10.

References

- A. G. Agargün, D. D. Anderson, and S. Valdes-Leon, Unique factorization rings with zero divisors, Comm. Algebra, 27 (1999), no. 4, 1967–1974.
- [2] D. D. Anderson and M. Bataineh, Generalization of prime ideals, Comm. Algebra 36 (2008), no. 2, 686–696.
- [3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831–840.
- [4] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3–56.
- [5] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra 33 (2005), no. 1, 43–49.
- [6] N. Bourbaki, Commutative Algebra, Chap. 1, 2. Paris: Hermann, 1961.
- [7] S. Galovich, Unique factorization rings with zero divisors, Math. Mag. 51 (1978), no. 5, 276–283.
- [8] S. K Jain, A. K. Srivastava, and A. A. Tuganbaev, Cyclic modules and the structure of rings, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2012.
- [9] J. Ohm and R. L. Pendleton, *Rings with Noetherian spectrum*, Duke Math. J. 35 (1968), 631–639.

JAVAD BAGHERI HAREHDASHTI DEPARTMENT OF MATHEMATICS UNIVERSITY OF BIRJAND BIRJAND, IRAN *E-mail address*: j_bagheri@birjand.ac.ir

Hosein Fazaeli Moghimi Department of Mathematics University of Birjand Birjand, Iran *E-mail address*: hfazaeli@birjand.ac.ir