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THE TOTAL GRAPH OF NON-ZERO ANNIHILATING
IDEALS OF A COMMUTATIVE RING

ABOLFAZL ALIBEMANI AND EBRAHIM HASHEMI

ABSTRACT. Assume that R is a commutative ring with non-zero identity
which is not an integral domain. An ideal I of R is called an annihilating
ideal if there exists a non-zero element a € R such that la = 0. S.
Visweswaran and H. D. Patel associated a graph with the set of all non-
zero annihilating ideals of R, denoted by Q(R), as the graph with the
vertex-set A(R)*, the set of all non-zero annihilating ideals of R, and two
distinct vertices I and J are adjacent if I 4+ J is an annihilating ideal.
In this paper, we study the relations between the diameters of Q(R) and
Q(RJz]). Also, we study the relations between the diameters of Q(R) and
Q(R[[z]]), whenever R is a Noetherian ring. In addition, we investigate
the relations between the diameters of this graph and the zero-divisor
graph. Moreover, we study some combinatorial properties of Q(R) such
as domination number and independence number. Furthermore, we study
the complement of this graph.

1. Introduction

In recent years, assigning graphs to algebraic structures has played an im-
portant role in the study of algebraic structures, for instance, see [1], [2] and
[10]. I. Beck in [3] introduced the idea of a zero-divisor graph of a commutative
ring, where he was mainly interested in colorings. D. F. Anderson and P. S.
Livingston in [1] introduced the zero-divisor graph of a commutative ring R,
denoted by I'(R), as the graph with the vertex-set Z(R)*, the set of all non-zero
zero-divisors of R, and two distinct vertices x and y are adjacent if xy = 0.
They investigate the relations between the ring-theoretic properties of R and
graph-theoretic properties of I'(R). S. Visweswaran and H. D. Patel in [10]
introduced and studied a graph, denoted by (R), with the vertex-set A(R)*,
the set of all non-zero annihilating ideals of R, and two distinct vertices I and
J are adjacent if I + .J is an annihilating ideal.
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Throughout this paper, R is a commutative ring with non-zero identity
which is not an integral domain. By a non-trivial ideal of R, we mean a non-
zero proper ideal of R. The set of all zero-divisors, nilpotent elements, prime
ideals, minimal prime ideals and maximal ideals of R are denoted by Z(R),
Nil(R), Spec(R), Min(R) and Max(R), respectively. Also, Z, Z,, and Q are the
integers, integers modulo n and rational numbers, respectively. Moreover, the
non-zero elements of X C R will be denoted by X*. An ideal I of R is called
an annihilating ideal if there exists a € R* such that Ja = 0. By A(R) we
mean the set of all annihilating ideals of R and A(R)* := A(R) \ {0}. Given
any subset X C R, the annihilator of X is the set Ann(X) = {a € R|aX = 0}.
A ring R is said to be reduced if it has no non-zero nilpotent element. A non-
zero ideal I of R is called essential, denoted by I <. R, if I has a non-zero
intersection with any non-zero ideal of R. The socle of R, denoted by soc(R),
is the sum of all minimal ideals of R. If R has not a minimal ideal, this sum
is defined to be zero. A ring R is said to be semisimple if soc(R) = R. The
Jacobson radical of R is denoted by J(R).

Let G = (V,E) be a graph, where V = V(G) is the set of vertices and
E = E(G) is the set of edges. The complement of G, denoted by G, is the
graph with the same vertex-set as GG, where two distinct vertices are adjacent
whenever they are non-adjacent in G. The distance between two vertices in a
graph is the number of edges in a shortest path connecting them. The diameter
of a connected graph G, denoted by diam(G), is the maximum distance between
any pair of the vertices of G (diam(G) = oo if G is disconnected). The girth
of a graph G, denoted by gr(G), is the length of the shortest cycle in G. A
graph with no cycle has infinite girth. Also, for a vertex v € V, the degree of
v, denoted by deg(v), is the number of incident edges. The graph H = (Vp, Ep)
is a subgraph of G if Vj C V and Ey C E. Moreover, H is called an induced
subgraph by Vo, if Vo CV and Ey = {{u,v} € E|u,v € Vy}. For two vertices
w and v in G, the notation u — v means that v and v are adjacent. In a
graph G, a set S C V(G) is a dominating set if every vertex not in S has a
neighbor in S. The domination number of G, denoted by v(G), is the minimum
size of a dominating set in G. A set S C V(G) is an independent set if the
subgraph induced by S contains no edge. The independence number a(QG) is
the maximum size of an independent set in G. A graph G is complete if every
vertex is adjacent to every other vertex. We denote the complete graph on n
vertices by K. A clique of G is a complete subgraph of G and the number of
vertices in a largest clique of G, denoted by w(G), is called the clique number
of G. A bipartite graph is one whose vertex-set can be partitioned into two
subsets so that no edge has both ends in any one subset. A complete bipartite
graph is one in which each vertex is joined to every vertex that is not in the
same subset. We denote K, ,, for the complete bipartite graph with part sizes
m and n. A graph is said to be planar if it can drawn in the plane so that its
edges intersect only at their ends. A wunicyclic graph is a connected graph with
a unique cycle.
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Let R be a commutative ring with identity which is not an integral domain.
The total graph of non-zero annihilating ideals of R, denoted by Q(R), is a
graph with the vertex-set A(R)*, and two distinct vertices I and J are adjacent
if I 4+ J is an annihilating ideal. In this paper, we study the relations between
the diameters of Q(R) and Q(R[z]). Also, we study the relations between
the diameters of Q(R) and Q(R[[z]]), whenever R is a Noetherian ring. In
addition, we investigate the relations between the diameters of this graph and
the zero-divisor graph. Moreover, we study some combinatorial properties of
Q(R) such as domination number, independence number and planarity. Among
other results, it is proved that the connectivity of the graphs Q(R), Q(R][z])
and Q(R][[z]]) are equivalent. Furthermore, we study the complement of this
graph and we investigate the connectivity of the graphs Q(R), Q(R[z]) and
Q(R[[z]]). Since Q(D) = ), where D is an integral domain, we assume that
throughout this paper R is a commutative ring with Z(R) # 0.

2. Main results

In this section, we study the relations between the diameters of Q(R) and
Q(R[z]). Also, we study the relations between the diameters of 2(R) and
Q(R][[x]]), whenever R is a Noetherian ring. Recall that a prime ideal P of R is
said to be mazimal N-prime of (0) if P is maximal with respect to the property
of being contained in Z(R). By [6, Theorem 1], Z(R) = U;co P;, where {P; };co
is the set of all maximal N-primes of (0) in R. Also, by [10, Lemmas 2.3, 3.1,
3.3, 3.4 and 4.1], we have diam(Q(R)) € {0,1,2,00}. In our first result we have
the following proposition. Note that xR or Rz is the ideal generated by the
element z € R.

Proposition 2.1. Let R be a ring. Then
(a) diam(Q(R[z])) € {1,2,00}.
(b) gr(Q(R[z])) = 3.
(c) diam(Q(R[[x]])) € {1,2, 00}.
(d) gr(Q(R[[x]])) = 3.

Proof. (a) Let a € Z(R)*. Then aR[z] and axzR[z] are distinct vertices of
Q(R[z]) and hence diam(Q2(R]x])) € {1,2, c0}.
(b) Let a € Z(R)*. Then aR[z] — azR[z] — az?R[z] — aR[z] is a cycle of
length three in Q(R]x]).
By a similar way as used in the proof of (a) and (b), one can prove the items
(c) and (b). O

In the next theorem, we show that the connectivity of the graphs Q(R),
Q(R[z]) and Q(R[[x]]) are equivalent. Before that, the following lemma is
necessary.

Lemma 2.2. Let R be a ring. Then Q(R) is disconnected if and only if R is
a reduced ring with exactly two minimal prime ideals.
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Proof. By [10, Lemmas 2.3, 3.1, 3.3, 3.4 and 4.1], Q(R) is disconnected if and
only if Py NP, =0, where P; and P, are maximal N-primes of (0). Thus Q(R)
is disconnected if and only if R is a reduced ring with exactly two minimal
prime ideals. O

Theorem 2.3. Let R be a ring. Then the following statements are equivalent:

(a) Q(R) is disconnected.

(b) Q(R]x]) is disconnected.

(¢) Q(R][x]]) is disconnected.
(

Proof. (a) <= (b) Suppose that {2(R) is disconnected. Then R is reduced and
Min(R) = {p1,p2}. We show that R[z| is reduced and |Min(R[z])| = 2. It is
clear that p;[z] and po[z] are prime ideals of R[z]. Since p; Np2 = 0, we have
p1[z]Np2[z] = (p1Np2)[z] = 0. Thus R[z] is a reduced ring and |Min(R[x])| = 2.
Therefore, Q(R[z]) is disconnected.

Conversely, assume that Q(R[x]) is disconnected. Then R[z] is a reduced
ring with exactly two minimal prime ideals. Now by [9, Remarks 3.27(ii)] and
[9, Exercise 2.43(iii)], one can see that R is a reduced ring with exactly two
minimal prime ideals. Thus Q(R) is disconnected.

(a) <= (c) follows similarly. O

Example 2.4. Let R = (Zy x Zg)[z]. Since (Zs x Z3) is disconnected,
O((Zs x Zs)[z]) is disconnected. Now assume that Ry = (Zy X Zsz)[x,y]. Then
since Ry = Rly|, Q(Z2 x Z3)[z,y]) is disconnected.

Let f be a zero-divisor of R[x]. It is well known that there exists ¢ € R* such
that ¢f = 0 (see [9, Exercise 1.36(iii)]). In the following lemma we generalize
this statement.

Lemma 2.5. Let I be an annihilating ideal of R[x]. Then there exists ¢ € R*
such that cI = 0.

Proof. Let I be an annihilating ideal of R[z]. If I = 0, then the statement
is clear. Thus we let I # 0. Then there exists g € R[z]* such that gI = 0.
Without loss of generality, we may assume that ¢ = ag + a1 + -+ + apx™
is a polynomial of least degree n such that gI = 0. Assume that f = by +
biz + -+ bpx™ € I*. Since gf = 0, we have a,b,, = 0. Thus b,,gI = 0.
Now since g is a polynomial of least degree n such that gI = 0, b,,a; = 0 for
1 =0,1,...,n. Similarly, if a,,by, = 0 for some k € {0,1,...,m}, then a;by =0

for i =0,1,...,n. Now suppose that j € {0,1,...,m} is maximum such that
anb; # 0. Then since gf = 0, we have (anb; + an—1bj41 + - )zt = 0. Thus
anb; = 0 which is a contradiction. Hence a,b; = 0 for all j € {0,1,...,m}.
Now we conclude that a, f = 0, for all f € I. Therefore, a,I = 0. O

In the following proposition we study the relations between the diameters of

Q(R) and Q(R][z]).

Proposition 2.6. Let R be a ring. Then we have the following statements:
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(a) diam(Q2(R)) € {0,1} if and only if diam(Q(R][x])) = 1.
(b) diam(Q(R)) = 2 if and only if diam(Q(R[z])) = 2.

Proof. (a) Suppose that diam(Q(R)) € {0,1}. Let I and J be two distinct
vertices of Q(R[x]). Put

A := {the set of all coefficients of elements of I}

and
A := {the set of all coefficients of elements of J}.

Then it is easy to see that A and A are annihilating ideals of R, by Lemma 2.5.
Since diam(Q(R)) € {0,1}, A + A is an annihilating ideal of R. Thus there
exists ¢ € R* such that ¢(I + J) = 0. Then I is adjacent to J in Q(R[z]) and
hence diam(Q(R[z])) = 1.

Conversely, suppose that diam(Q(R[z])) = 1. If Z(R) is a minimal ideal of
R, then we have diam(Q2(R)) = 0. Otherwise, assume that I and J are two
distinct vertices of Q(R). Then I[z] and J[z] are distinct vertices of Q(R]x]).
Since I[z] and J[z] are adjacent in Q(R[z]), by Lemma 2.5 there exists an
element ¢ € R* such that ¢(I[z] + J[z]) = 0. Hence ¢(I + J) = 0 and so I is
adjacent to J in Q(R). Thus diam(2(R)) = 1.

(b) By Theorem 2.3 and item (a), it is straightforward. O

We use the following two lemmas in the sequel.

Lemma 2.7. Let R be a Noetherian ring. Then Z(R[[z]]) = U™, P;[[x]], where
P; = Anng(r;) € Spec(R) andr; € R* fori=1,2,...,n. In particular, if Z(R)
is an ideal, then Z(R][[z]]) = Anng(r)[[z]], where Z(R) = Anng(r) for some
r e R".

Proof. Since R is a Noetherian ring, (0) has a minimal primary decomposi-
tion by [9, Corollary 4.35]. Then by [4, Theorem 4], [9, Proposition 8.19]
and [9, Proposition 8.22], one can see that Z(R[[z]]) = U, Pi[[x]], where
P, = Anng(r;) € Spec(R) and r; € R* for i = 1,2,...,n. The “in partic-
ular” statement follows similarly (see [6, Theorem 81]). O

Lemma 2.8. Let R be a Noetherian ring. Then Z(R) = Ann(r) for some
r € Z(R)* if and only if diam(Q(R)) € {0,1}.

Proof. Assume that Z(R) = Ann(r) for some r € Z(R)*. If |A(R)*| = 1, then
diam(Q2(R)) = 0. Thus we can suppose that I and J are two distinct vertices of
Q(R). Then r(I + J) = 0 and hence I is adjacent to J. Thus diam(Q2(R)) = 1.

Conversely, assume that diam(2(R)) € {0,1}. If diam(Q(R)) = 0, then
Z(R) = Ann(r) for some r € Z(R)*. Thus we can suppose that diam(2(R)) =
1. Let ,y € Z(R). Then since diam(Q(R)) = 1, a(Rz + Ry) = 0 for some
a € Z(R)*. Thus Z(R) is an ideal. Now since R is a Noetherian ring, by
[9, Proposition 8.19], [9, Proposition 8.22] and [6, Theorem 81], it is easy to see
that Z(R) = Ann(r) for some r € Z(R)*. O
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In the next proposition we study the relations between the diameters of
Q(R) and Q(R][z]]), when R is a Noetherian ring.

Proposition 2.9. Let R be a Noetherian ring. Then we have the following
statements:

(a) diam(Q(R)) € {0,1} if and only if diam(Q(R[[z]])) =

(b) diam(Q(R)) = 2 if and only if diam(Q(R[[z]])) = 2.

Proof. (a) Suppose that diam(Q(R)) € {0,1}. Since R is Noetherian, by Lem-
mas 2.7 and 2.8, we have Z(R|[[z]]) = Anng(r)[[z]] for some r € Z(R)*. Let [
and J be two distinct vertices of Q(R[[z]]). Then I +J C Z(R[[z]]). Now since
Z(R|[z]]) = Anng(r)[[z]] for some r € Z(R)*, we have r(I + J) = 0. Thus I is
adjacent to J in Q(R[[z]]). Then we conclude that diam(Q(R[[z]])) = 1.

Conversely, suppose that diam(Q(R][[z]])) = 1. If Z(R) is a minimal ideal
of R, then we have diam(2(R)) = 0. Otherwise, let I and J be two distinct
vertices of Q(R). Then it is easy to see that I[[z]] and J[[z]] are two distinct
vertices of Q(R[[z]]). Since Z(R[[z]]) = U™, P;[[z]], where P, = Anng(r;) €
Spec(R) for some r; € Z(R)*, and diam(Q(R[[z]])) = 1, we have I[[z]] +
J([z]] € U, P;[[z]]. Thus by [6, Theorem 81], I[[z]] + J[[z]] € P;[[z]] for some
j€{1,2,...,n}. Then there exists d € Z(R)* such that d(I[[z]] + J[[z]]) = 0.
Thus d(I + J) = 0 and hence [ is adjacent to J in (R). Then we conclude
that diam(Q(R)) = 1.

(b) By Theoremy 2.3 and item (a), it is straightforward. O

3. Some combinatorial properties of Q(R)

In this section, we investigate some combinatorial properties of Q(R) such
as domination number and independence number. Moreover, we investigate
the relations between the diameters of this graph and the zero-divisor graph.
In the next proposition, we determine the domination number of Q(R). Before
that, we need the following two lemmas.

Lemma 3.1. Let R be a ring and I an ideal of R. Then I + Ann(I) is an
essential ideal of R.

Proof. Assume to the contrary that I + Ann(J) is not an essential ideal of R.
Then there exists a non-zero ideal J of R such that JN(I+ Ann(I)) = 0. Thus
JNI =0 and hence J C Ann(I) which is impossible. Therefore, I + Ann(I) is
an essential ideal of R. (]

Lemma 3.2. Assume that I and J are two distinct vertices of Q(R). Then I
is adjacent to J if and only if Ann(I) N Ann(J) # 0.

Proof. Assume that I is adjacent to J. Then x(I 4+ J) = 0, for some z € R*.
Thus Ann(Z) N Ann(J) # 0. Conversely, assume that Ann(I) N Ann(J) # 0.
Now we choose a non-zero element y € Ann(I) N Ann(J). Thus y(I+J) =0
and hence [ is adjacent to J. (|
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Proposition 3.3. Let R be a ring and I a vertex of Q(R). Then the set
{I,Ann(I)} is a dominating set. In particular, v(2(R)) < 2.

Proof. Suppose that J € A(R)*\ {I, Ann(/)}. If I = Ann(I), then by Lemma
3.1 we have Ann(/) N Ann(J) # 0 and hence J is adjacent to I, by Lemma
3.2. Now assume that I # Ann(I). Suppose that J is not adjacent to I. Then
Ann(I) N Ann(J) = 0. Thus Ann(J) C Ann(Ann(7)). Therefore, J is adjacent
to Ann(I). O

Example 3.4. Let R = Z x Z. Then the set {Z x 0,0 x Z} is a dominating
set in Q(R).

Corollary 3.5. Let R be a ring. Then
(a) R is non-reduced if and only if v(Q(R)) = 1.
(b) R is reduced if and only if v((R)) = 2.

Proof. (a) Let R be non-reduced. Then there exists I € A(R)* such that
I? = 0. Now by Lemmas 3.1 and 3.2, we conclude that I is adjacent to every
other vertex and so y(Q2(R)) = 1.

Conversely, assume that v(2(R)) = 1. Then there exists a vertex of Q(R),
say I, such that I is adjacent to every other vertex. If I = Ann(I), then R
is non-reduced. Otherwise, we can suppose that I # Ann(I). Now since I is
adjacent to Ann(7), there exists © € R* such that x(I + Ann(I)) = 0. Thus
2?2 = 0 and so R is non-reduced.

(b) By Proposition 3.3 and item (a), it is straightforward. O

Proposition 3.6. Let Ry and Ry be rings and R = Ry X Ry. Thenv(Q(R)) =1
if and only if y(QUR1)) =1 or y(2(R2)) = 1.

Proof. By Corollary 3.5, v(©(R)) = 1 if and only if R is non-reduced. On the
other hand, R is non-reduced if and only if R; or Rs is non-reduced. Thus we
conclude that v(2(R)) = 1 if and only if v(Q(R1)) =1 or v(Q(R2))=1. O

An annihilator prime for a ring R is any prime ideal P which equals the
annihilator of some non-zero ideal of R. It is easy to see that any ideal maximal
among the annihilators of non-zero ideals of a ring R is prime. We use A(R)
to denote the set of all maximal annihilators of a ring R. Note that if R is
a Noetherian ring, then A(R) # 0. In the next proposition, we study the
independence number of Q(R).

Proposition 3.7. Let R be a ring such that 1 < |A(R)| < oo and Z(R) =
Upear)P. Then a(Q(R)) = |A(R)|.

Proof. If |A(R)| = 1, then Z(R) is an annihilator ideal. Thus (R) is a com-
plete graph and hence «(2(R)) = 1. Now suppose that n = |A(R)| > 2
and A(R) = {Py, Pa,...,P,}. First we show that A(R) is an independent
set. To see this, assume that P; is adjacent to P». Then there exists x € R*
such that 2(P, + P2) = 0. Since Z(R) = Upc a(r)P, by [6, Teorem 81] there



386 A. ALIBEMANI AND E. HASHEMI

exists P; € A(R) such that P, + P, C P, which is a contradiction. Hence
a(Q(R)) > |A(R)|. Now assume that S := {I1,Is,..., 41} is an independent
set with n+1 vertices. Thus since Z(R) = Upe (r) P, by [6, Theorem 81] there
exist distinct 4,5 € {1,2,...,n} and P € A(R) such that I; + I; C P. Then I,
is adjacent to I; which is a contradiction. Hence a(Q2(R)) = |A(R)|. O

Corollary 3.8. Let R be a ring. Then

(a) If R is Noetherian, then a(Q(R)) < oo.
(b) If R is reduced and |Min(R)| < oo, then a(Q(R)) = |Min(R)|.

Proof. (a) Assume that R is a Noetherian ring. Then by [6, Theorem 80],
Z(R) = Upcar)P and 1 < |A(R)| < co. Thus o(Q(R)) < oo.

(b) Assume that R is a reduced ring and Min(R) = {p1,p2,...,pn}. Then
Ann(p;) # 0 for ¢ = 1,2,...,n. We show that Min(R) = A(R). To see this,
let p € Min(R). If p ¢ A(R), then there exists € R* such that p G Ann(z).
Now since R is reduced, we have Ann(z) C q for some q € Min(R) which is
impossible. Thus Min(R) C A(R). Now assume that P € A(R). Then by
[5, Corollary 2.4] and [6, Theorem 81|, we have P € Min(R). Thus we conclude
that Min(R) = A(R) and hence a(2(R)) = |Min(R)|. O

In the next proposition we study the case that the independence number of
Q(R) is finite.

Proposition 3.9. Let R be a reduced ring such that every prime ideal contained
in Z(R) is a subset of a finite union of annihilator prime ideals. If a(Q(R)) <
00, then the number of annihilator ideals of R is at most 2*(2(R)

Proof. Suppose that P is a prime ideal contained in Z(R) and P CU?_; Ann(Xj),
where X; C R and Ann(X;) is an annihilator prime ideal for i = 1,2,...,n.
Then by [6, Theorem 81|, we have P C Ann(X;) for some i € {1,2,...,n}.
Hence we conclude that Ann(p) # 0, for all p € Min(R). Now since a(Q(R)) <
00, we can suppose that a(Q(R)) = n. We show that [Min(R)| = n. To see
this, let p1,p2,...,Ppnt+1 be distinct minimal prime ideals of R. Now if p; is
adjacent to po, then there exists a € R* such that a(p;+p2) = 0. Hence since R
is reduced, we have p; +po C q for some q € Min(R) which is impossible. Thus
by Corollary 3.8, we may assume that Min(R) = {p1,p2,...,pn}. Now sup-
pose that X C R. Then one can see that Ann(X)Ann(Ann(X)) = 0 and hence
Ann(X) € Ann(Ann(Ann(X))). On the other hand, XAnn(X) = 0 and so
X C Ann(Ann(X)). Thus we conclude that Ann(Ann(Ann(X))) C Ann(X).
Hence Ann(Ann(Ann(X))) = Ann(X). Now by our assumptions, we have
Ann(X) C Nierp; and Ann(Njesp;) € Ann(X), where I := {i| Ann(X) C p;}
and J := {i| Ann(Ann(X)) C p;}. Since Ann(X)Ann(Ann(X)) =0, IUJ =
{1,2...,n}. On the other hand, since R is a reduced ring, (N;crp;)N(Njesp;) =
0. Now we have N;erp; € Ann(Njesp;) (see [9, Remarks 2.28(i)]). Thus we
conclude that the number of annihilator ideals of R is at most 2*(2(F) (note
that we have (2(R)) = [Min(R)|). O
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Remark 3.10. Let R be an Artinian ring. Then by [7, Theorem 4.12], J(R) is
nilpotent. Also, by [9, Exercise 8.50] we have R = R; X Ry X -+ X R,,, where
R; is a local Artinian ring for ¢ = 1,2,...,n. Moreover, |Max(R)| = n and
Z(R) = U m;, where m; = Ann(z;) is a maximal ideal of R and x; € R* for
1=1,2,...,n. We use this fact in the sequel.

In the following proposition we study the case that (R) is unicyclic.

Proposition 3.11. Let R be a ring. Then Q(R) is unicyclic if and only if R
is a local ring with exactly three non-trivial ideals or R =2 F x S, where F is a
field and S is a ring with exactly one non-trivial ideal.

Proof. Assume that Q(R) is unicyclic. Then every vertex of Q(R) contains at
most three non-zero ideals. Thus R contains a minimal ideal, say Rxz. Hence
Rzr = Anf(a:) as an R-module isomorphism and hence ﬁ(gﬂ) is an Artinian R-
module. Also, since Ann(z) is a vertex of Q(R), Ann(z) satisfies the descending
chain condition on R-submodules and so Ann(z) is an Artinian R-module. Now
since 0 — Ann(z) - R — ﬁ@) — 0 is an exact sequence, R is an Artinian
ring by [9, Corollary 7.19]. Thus R 2 Ry x Ry X -+ X R,,, where R; is a local
Artinian ring for ¢ = 1,2,...,n. First assume that R is not decomposable.
Then since J(R) is nilpotent, we conclude that the number of non-trivial ideals
of R is exactly three. Now assume that R is decomposable. We show that n = 2.
To see this, let n =3. Then R{ X Ro x0— Ry x0Xx0—0Xx Ry x0— Ry X Ry x0
and 0 X Ry X R3—0x0x R3—0x Ry x0—0x Ry x Rg are cycles in (R) which
is a contradiction. If n > 3, then by a similar method one can see that Q(R)
is not unicyclic. Thus we may assume that n = 2. Now if Ry and Ry are not
fields, then Ry x0—11 x0—I; x [p,— Ry x0and 0xXx Ry —0x Iy —I; Xx I —0 X Ro,
where I; is a non-trivial ideal of R; for ¢ = 1,2, are cycles in Q(R) which is
a contradiction. Now without loss of generality, we can suppose that Rp is
a field. If Ry is a ring with two distinct non-trivial ideals J; and Js, then
RlXO—R1><J1—0XJ1—R1XOandOXRQ—OXJl—OXJQ—OXRQ are
cycles in Q(R) which is impossible. Therefore, Ry is a ring with exactly one
non-trivial ideal.

The converse is clear. (]

Proposition 3.12. Let R be a ring. If for all vertices of the form I = Ann(X),
where X C R, deg(I) < oo, then Q(R) is a finite graph.

Proof. Suppose that I = Ann(X), where X C R, is a vertex of Q(R). Since
deg(I) < oo, I satisfies the descending chain condition on R-submodules. Now
by a method similar to that we used in the proof of Proposition 3.11, we
conclude that R is an Artinian ring. Then [Max(R)| =n and Z(R) = U, m;,
where m; = Ann(z;) is a maximal ideal of R and x; € R* for i = 1,2,...,n.
Now since deg(m;) < oo for i = 1,2, ..., n, the number of ideals contained in m;
fori=1,2,...,n, is finite. Hence we conclude that Q(R) is a finite graph. O
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Example 3.13. Assume that R = Zg X Z. Then one can see that deg(Zs x0) =
0. Also, Q(R) is not a finite graph.

Proposition 3.14. Let R be a reduced ring. If Q(R) contains a vertex of finite
degree, then R =T x S, where F is a field and S is a reduced ring.

Proof. Let I be a vertex of Q(R) such that deg(I) < co. Then I satisfies
the descending chain condition on R-submodules. Thus R contains a minimal
ideal, say J. Now by [7, Lemma 10.22], we have J = Rx, where 2? = x. Hence
by [7, Exercise 1.7], it is easy to see that R 2 F x S, where F is a field and S
is a reduced ring. (I

Recall that a graph is said to be planar if it can drawn in the plane so
that its edges intersect only at their ends. A subdivision of a graph is a graph
obtained from it by replacing edges with pairwise internally-disjoint paths. By
Kuratowski’s Theorem, there is a characterization for planar graphs that say
a graph is planar if and only if it does not contain a subdivision of K5 or K3 3
(see [12, Theorem 6.2.2]). In the next proposition we study the planarity of
Q(R).

Proposition 3.15. Let R be a ring such that Q(R) is planar.

(a) If R is not decomposable, then the number of non-trivial ideals of R is at
most four.
(b) If R is decomposable, then R is isomorphic to one of the following rings:

]Fl XIFQX]Fg, FxS
where F and F; are fields for i =1,2,3 and S is a ring with at most one
non-trivial ideal.

Proof. (a) Suppose that I is a vertex of Q(R). Since Q(R) is planar, by Kura-
towski’s Theorem the number of non-zero ideals contained in [ is at most four.
Now by a method similar to that we used in the proof of Proposition 3.11, we
conclude that R is an Artinian ring. Thus R~ R; X Ry X -+ X R,,, where R;
is a local Artinan ring for ¢ = 1,2,...,n. Since R is not decomposable;, R is a
local Artinian ring. On the other hand, J(R) is nilpotent. Then the number of
non-trivial ideals of R is at most four.

(b) Assume that R is decomposable. Then since Q(R) is planar, we have
R >~ Ry X Ry X -+ X R,,, where n # 1 and R; is a local Artinan ring for
i=1,2,...,n. We claim that n < 3. To see this, let R =2 Ry X Ry X R3 X Ry4.
Then one can easily see that the set {R; X R2 X R3 x 0, Ry x Ry x 0 x 0, Ry X
0x0x0,0x Ry x0x0,0x0x Rz x0} forms K5 and hence Q(R) is not planar
which is a contradiction. If n > 4, then by a similar method one can see that
Q(R) is not planar. Now suppose that n = 3. If R 2 F; x Fy x F3, where F;
is a field for ¢ = 1,2,3, then it is easy to see that Q(R) is planar. Otherwise,
without loss of generality we may assume that R; contains a non-trivial ideal
as I1. Then the set {Ry; x Ry x 0, Ry x0x0,I; Xx Ry x0,1I; x0x0,0x Ry x 0}
forms K5 and hence Q(R) is not planar. Now suppose that n = 2. Assume
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that Ry and Ry are not fields. If I; is a non-trivial ideal of R; for i = 1,2, then
the set {Ry X I, Ry x 0,11 x I3, I; x 0,0 x Iz} forms K5 and hence Q(R) is
not planar which is a contradiction. Thus without loss of generality, we may
assume that Ry is a field. If J; and J, are two distinct non-trivial ideals of Ra,
then the set {R; x 0,0 x Jy,0 X Ja, Ry X J1, Ry X Jo} forms K5 and hence Q(R)
is not planar which is a contradiction. Thus the number of non-trivial ideals
of Ry must be at most one. O

Corollary 3.16. Let R be a ring. If Q(R) is planar, then R is an Artinian
ring.

In the next proposition we study the case that Q(R) is a connected bipartite
graph.

Proposition 3.17. Let R be a ring and diam(2(R)) # 0. Then Q(R) is a
connected bipartite graph if and only if Q(R) = Ks.

Proof. Suppose that Q(R) is bipartite. Then by [12, Theorem 1.2.18], Q(R)
contains no cycle of odd length. Thus every vertex of Q(R) contains at most
two non-zero ideals. Then by a similar way as used in the proof of Proposition
3.11, one can see that R is an Artinian ring. Hence every proper ideal of R is
an annihilating ideal (see Remark 3.10). We claim that R is indecomposable.
To see this, assume that R = Ry X Ry, where Ry and Rs are rings. If Ry and R,
are fields, then Q(R) is disconnected which is a contradiction. Otherwise, let
I, be a non-trivial ideal of R;. Then 0 x Ro —I1 x0—1; X Ry —0 X Ry is a cycle
of length three in Q(R) which is a contradiction. Thus R is indecomposable
and hence by Remark 3.10, R is a local ring with exactly two non-trivial ideals.
Therefore, Q(R) = K.

The converse is clear. (]

In the next proposition we study the case that J(R) is a vertex of Q(R).

Proposition 3.18. Let R be a ring with finitely many maximal ideals. Then
J(R) is a vertex of Q(R) if and only if R contains a minimal ideal and J(R) # 0.

Proof. Suppose that |Max(R)| < oco. We claim that soc(R) = Ann(J(R)).
Since |Max(R)| < oo, by [9, Exercise 3.60] we have TI}%) >2F; xFyx - xF,,
where F; is a field for i = 1,2,...,n. Thus Ti‘i) is an Artinian ring. Therefore,

soc(R) = Ann(J(R)) by [7, Exercise 4.18]. Now J(R) is a vertex of Q(R) if and
only if R contains a minimal ideal and J(R) # 0. O

Proposition 3.19. Let R be a ring. If for all vertices of the form I = Ann(X),
where X C R, deg(I) < oo, then J(R)~(@U)+1 = 0,

Proof. Suppose that for all vertices of the form I = Ann(X), where X C R,
we have deg(I) < oo. Then by Proposition 3.12, Q(R) is a finite graph. Thus
w(Q(R)) < oo. Hence every vertex of Q(R) satisfies the descending chain condi-
tion on R-submodules. Now by a method similar to that we used in the proof of
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Proposition 3.11, we conclude that R is an Artinian ring. Thus by Remark 3.10,
J(R) is nilpotent. If J(R)*(2(F)+1 -£ 0 then the subgraph induced by vertices
{J(R), J(R)?,...,J(R)*CEN+1} s a clique of Q(R) with w(Q(R)) + 1 vertices
which is impossible. Therefore, we conclude that J(R)*(©@F)+1 = q, O

Proposition 3.20. Let R be an Artinian ring such that J(R) # 0. Then J(R)
is adjacent to every other verter.

Proof. Assume that R is an Artiniain ring. Then by Remark 3.10, J(R) is
nilpotent and hence J(R) is a vertex of Q(R). Now by [7, Exercise 4.18], we
have soc(R) = Ann(J(R)). Since each non-zero ideal of R contains a minimal
ideal, we conclude that Ann(J(R)) <. R. Thus by Lemma 3.2, J(R) is adjacent
to every other vertex. 0

The zero-divisor graph of a commutative ring R, denoted by I'(R), is a
graph with the vertex-set Z(R)* and two distinct vertices x and y are adjacent
if zy = 0. By [1, Theorem 2.3], T'(R) is connected and diam(I'(R)) < 3. In the
next proposition, we study the relations between the diameters of Q(R) and
I'(R). Before that, we need the following theorem.

Theorem 3.21 ([8, Theorem 2.6]). Let R be a ring.

(a) diam(I'(R)) = 0 if and only if either R =~ Z4 or R = Z(fv[f)]
(b) diam(T'(R)) = 1 if and only if xzy = 0 for all distinct x,y € Z(R) and
Z(R)| > 3.

(¢) diam(T'(R)) = 2 if and only if either R is reduced with exactly two minimal
prime ideals and at least three non-zero zero-divisors, or Z(R) is an ideal
whose square is not zero and each pair of distinct zero-divisors has a
non-zero annihilator.

(d) diam(I'(R)) = 3 if and only if there are distinct x,y € Z(R)* such that
Ann(z) N Ann(y) = 0 and either R is a reduced ring with more than two
minimal prime ideals, or R is non-reduced.

Note that by [10], diam(2(R)) € {0, 1,2, 00} (see [10, Lemmas 2.3, 3.1, 3.3,
3.4 and 4.1]).

Proposition 3.22. Let R be a ring. Then we have the following statements:

(a) If diam(I'(R)) = 0, then diam(2(R)) = 0.

(b) Ifdiam(T'(R)) =1 and R % Zy X Zg, then diam(Q(R)) € {0,1}.
(¢c) If diam(I'(R)) = 2, then diam(QX(R)) € {1 2,00}.

(d) If diam(T'(R)) = 3, then diam(Q2(R)) =

(e) If diam(Q(R)) = 0, then diam(T'(R)) € {0 1}.

(f) If diam(2(R)) = 1, then diam(T'(R)) € {1,2}.

(g) If diam(Q(R)) = 2, then diam(I'(R)) € {2,3}.

(h) If diam(Q2(R)) = oo and R 2 Zs X Zs, then diam(I'(R)) = 2.

Proof. (a) Assume that diam(I'(R)) = 0. Then by Theorem 3.21(a), either

R=Z7Z40r R= (T[;)] and hence diam(Q(R)) = 0.
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(b) Assume that diam(I'(R)) = 1. Since R 2% Zy X Zg, by [1, Theorem 2.8]
we have zy = 0 for all z,y € Z(R). Thus, diam(Q(R)) € {0, 1}.

(c¢) Assume that diam(I'(R)) = 2. Then by Theorem 3.21(c), either R is
reduced with exactly two minimal prime ideals and at least three non-zero zero-
divisors, or Z(R) is an ideal whose square is not zero and each pair of distinct
zero-divisors has a non-zero annihilator. Now if R is a reduced ring with exactly
two minimal prime ideals, then by Lemma 2.2 we have diam(Q(R)) = oo.
Otherwise, we may assume that Z(R) is an ideal whose square is not zero and
each pair of distinct zero-divisors has a non-zero annihilator. Then we have
diam(Q2(R)) € {1,2}.

(d) Assume that diam(I'(R)) = 3. Then by Theorem 3.21(d), there are
distinct z,y € Z(R)* such that Ann(z) NAnn(y) = 0 and either R is a reduced
ring with more than two minimal prime ideals, or R is non-reduced. Now by
Lemma 2.2, we have diam(2(R)) = 2.

(e) Assume that diam(Q2(R)) = 0. Then Z(R) is an ideal whose square is
zero. Hence by Theorem 3.21(c) and (d), we have either diam(I'(R)) = 0 or
diam(T'(R)) = 1.

(f) Assume that diam(2(R)) = 1. Then the subgraph induced by the prin-
cipal ideals of R is complete and hence one can easily see that Z(R) is an ideal.
If Z(R) = Ann(z) for some non-zero x € Z(R), then diam(I'(R)) € {1,2}.
Otherwise, if Z(R) is not an annihilator ideal, then Z(R) is an ideal whose
square is not zero. Since diam(Q2(R)) = 1, each pair of distinct zero-divisors
has a non-zero annihilator (see Lemma 3.2). Hence by Theorem 3.21(c), we
have diam(I'(R)) = 2.

(g) Assume that diam(2(R)) = 2. Then by [1, Theorem 2.8], one can easily
see that diam(I'(R)) € {2,3}.

(h) Assume that diam(Q2(R)) = co. Then by Lemma 2.2, R is reduced with
exactly two minimal prime ideals. Hence since R 2 Zy X Zs, by Theorem
3.21(c) we have diam(T'(R)) = 2. O

Corollary 3.23. Let R be a ring. If diam(Q(R)) = 0, then diam(Q(R][[z]])) =
1.

Proof. Suppose that diam(Q(R)) = 0. Then by Proposition 3.22, we have
diam(I'(R)) € {0,1}. Now by [2, Theorem 3|, diam(I'(R[[z]])) = 1. Therefore,
by Propositions 3.22 and 2.1, we have diam(Q(R[[z]])) = 1. O

In the next proposition we study the relation between the clique number of
I'(R) and the independence number of Q(R).

Proposition 3.24. Let R be a reduced ring. If w(I'(R)) < oo, then we have
a(Q(R)) < oo.

Proof. Suppose that R is a reduced ring and w(I'(R)) < oo. Then by [3,
Theorem 3.7], |[Min(R)| < co. Therefore by Corollary 3.8, a(2(R)) < co. O
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4. The complement of Q(R)

The complement of Q(R), introduced and studied in [11], is the graph with
the same vertex-set as Q(R), where two distinct vertices I and J are adjacent
if and only if Ann(I+J) = 0. We use Q(R) to denote the complement of Q(R).
Note that by Corollary 3.5, if R is non-reduced and |A(R)*| > 2, then Q(R) is
not connected. Moreover, by [11, Proposition 2.4], if R is a reduced ring, then
diam(Q2(R)) < 3. Thus we have the following lemma.

Lemma 4.1. Let R be a ring. Then Q(R) is connected if and only if R is a
reduced ring or |A(R)*| = 1.

Proof. See [11, Proposition 2.4] and Corollary 3.5. O

In the next theorem we study the relations between the connectivity of the
graphs Q(R), Q(R[z]) and Q(R[[z]]).

Theorem 4.2. Let R be a ring. Then the following statements are equivalent:
(a) Q(R) is disconnected or |A(R)*| = 1.
(b) Q(R]x]) is disconnected.
(¢) Q(R[[z]]) is disconnected.

Proof. (a) <= (b) Suppose that Q(R) is disconnected or |A(R)*| = 1. Then
by Lemma 4.1, R is non-reduced. Hence R]x] is non-reduced and so Q(R]z]) is
disconnected.

Conversely, assume that (R][z]) is disconnected. Then R[z] is non-reduced
and hence by [9, Exercise 1.36], we conclude that R is non-reduced. Thus Q(R)
is disconnected or |A(R)*| = 1.

(a) <= (c) follows similarly. O

In the following lemma we provide a shorter proof for [11, Proposition 2.11].

Lemma 4.3. Let R be a ring. Then Q(R) is complete if and only if either
Z(R) is a minimal ideal of R or R =2 Fq x Fo, where F; is a field fori=1,2.

Proof. Suppose that Q(R) is complete. If R is non-reduced, then Z(R) is a
minimal ideal of R, by Corollary 3.5. Now assume that R is reduced. Let I be
a vertex of Q(R). Since Q(R) is complete, I is a minimal ideal of R. Hence
I = Re, where e¢? = e, by [7, Lemma 10.22]. Thus R & R; X Ry, where R; is a
field for ¢ = 1,2 (see [7, Exercise 1.7]).

The converse is clear. O

By Lemma 4.3, if diam(Q(R)) = 1, then R = F; x Fy, where F; is a
field for ¢ = 1,2. Also, by Proposition 2.1, we have diam(Q2(R[z])) # 0 and
diam(Q(R[[z]])) # 0. Now by [11, Proposition 2.4] and Theorem 4.2, we have
the following corollary.

Corollary 4.4. Let R be a reduced ring. Then
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(a) diam(Q(R[z])) € {2,3}.
(b) diam(Q(R[[z]])) € {2,3}-

In next two propositions, we investigate the relations between the diameters
of the graphs Q(R), Q(R[x]) and Q(R[[z]]).

Proposition 4.5. Let R be a reduced ring. Then
(a) diam(Q2(R)) € {1,2} if and only if diam(Q(R][z])) = 2.

(b) diam(Q(R)) = 3 if and only if diam(Q(R[z])) = 3.
Proof. (a) Suppose that diam(Q(R)) € {1,2}. Then by [11, Remark 2.19], R
has exactly two minimal prime ideals. Let Min(R) = {p1,p2}. Thus, p;1[z] and
pa[z] are prime ideals of R[z]. Now since p; Npy = 0, we have pl[:c] Npelz] =
(p1 Np2)[z] = 0. Thus R[z] is a reduced ring and |[Min(R[z])| = 2. Therefore,
diam(Q(R[x])) = 2, by [11, Remark 2.19] and Corollary 4.4.

Conversely, assume that diam(m) = 2. Then by [11, Remark 2.19],
RJx] is a reduced ring with exactly two minimal prime ideals. Now by [9,
Remarks 3.27(ii)] and [9, Exercise 2.43(iii)], it is easy to see that R is a reduced
ring with exactly two minimal prime ideals. Thus diam(Q(R)) € {1,2}, by
11, Remark 2.19].

(b) By [11, Proposition 2.4], Corollary 4.4 and item (a), it is clear. O

Now by a method similar to that we used in the proof of Proposition 4.5,
we have the following proposition.

Proposition 4.6. Let R be a reduced ring. Then
(a) diam(Q(R)) € {1,2} if and only if diam(Q(R[[z]])) =

(b) diam(Q(R)) = 3 if and only if diam(Q(R[[z]])) = 3.

In the next proposition we study the case that Q(R) is unicyclic.

Proposition 4.7. Let R be a ring such that [Min(R)| < oo and x is unit for
all x € R\ Z(R). Then QUR) is unicyclic if and only if R = Fy x Fy x Fs,
where F; is a field fori=1,2,3.

Proof. Assume that Q(R) is unicyclic. Then since Q(R) is connected, R is a
reduced ring (see Lemma 4.1). Now by [5, Corollary 2.4] we have Z(R) =
UpeMin(r)P- Moreover, by [6, Theorem 81] we have Min(R) = Max(R). Then
it is easy to see that the subgraph induced by vertices of Min(R) is complete.
Hence we conclude that |Min(R)| < 3. Now assume that [Min(R)| = 3. Then
by [9, Exercise 3.60], we have R = Fy X Fy x F3, where F; is a field for i = 1,2, 3.
Thus one can see that Q(R) is unicyclic. Now assume that |[Min(R)| = 2. Then
by [9, Exercise 3.60], we have R = Fy x Fy, where F; is a field for i = 1,2. Thus
Q(R) is not unicyclic which is a contradiction.

The converse is clear. O

In the following proposition we find a dominating set in Q(R).
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Proposition 4.8. Let R be a reduced ring such that [Min(R)| < co. Then

Min(R) is a dominating set of Q(R).

Proof. Since R is a reduced ring with |[Min(R)| < oo, Ann(p) # 0 for all
p € Min(R). Let Min(R) = {p1,p2,...,Pn}. Now assume that I is a vertex of
Q(R) \ Min(R). Since R is a reduced ring, there exists p; € Min(R) such that
I ¢ p;. We show that I is adjacent to p; in Q(R). To see this, let y € R* such
that y(I + p;) = 0. Then since R is a reduced ring, we have y € Y1 P
Hence I C p; which is impossible. Therefore, Ann( + p;) = 0 and so [ is
adjacent to p; in Q(R). Thus Min(R) is a dominating set of Q(R). O

Example 4.9. Assume that R = M Then it is easy to see that R is a

z?,my,y°)
local ring and J(R) is nilpotent. Thus deg(I) = 0, for all vertices I of Q(R).
Therefore, A(R)* is a dominating set in Q(R).
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