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AND GORENSTEIN PRÜFER DOMAINS
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Dedicated to memory of the late Professor Muhammad Zafrullah

Abstract. In this paper, we prove that a domain R is an FGV-domain if
every finitely generated torsion-free R-module is strongly copure projec-

tive, and a coherent domain is an FGV-domain if and only if every finitely
generated torsion-free R-module is strongly copure projective. To do this,

we characterize G-Prüfer domains by G-flat modules, and we prove that a

domain is G-Prüfer if and only if every submodule of a projective module
is G-flat. Also, we study the D + M construction of G-Prüfer domains.

It is seen that there exists a non-integrally closed G-Prüfer domain that

is neither Noetherian nor divisorial.

1. Introduction

Throughout this paper, R is always a commutative ring with 0 ̸= 1. For an
R-module M , the dual module HomR(M,R) of M is denoted by M∗. For a
domain R, the quotient field of R is denoted by qf(R).

Let n be a fixed non-negative integer. Recall from [14] that an R-module
M is said to be n-copure projective if Ext1R(M,N) = 0 for any R-module N
with fdR(N) ≤ n. In particular, M is called copure projective if n = 0, and M
is called strongly copure projective if ExtiR(M,N) = 0 for any flat R-module
N and any i ≥ 1. In [35, Corollary 3.16], it is shown that a domain R is
G-Dedekind if and only if every ideal of R is strongly copure projective. Com-
paring with this result, our original motivation of this paper is to characterize
G-Prüfer domains by strongly copure projective ideals.

It is well-known that a domain R is a Dedekind domain if and only if every
ideal of R is projective. The concept of Dedekind domains has been extended to
Gorenstein homological algebra, which are called Gorenstein Dedekind domains
in [23]. Recall that a domain R is called Gorenstein Dedekind (G-Dedekind)
if the Gorenstein global dimension of R is at most one. It is shown in [21,
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Corollary 1.3] that a domain R is G-Dedekind if and only if every ideal of R is
G-projective. Hence every Dedekind domain is G-Dedekind. But the converse
case is not true because the G-Dedekind domain is not necessarily integrally
closed. The first example of a non-integrally closed G-dedekind domain is
given in [21, Example 1.12] by Hu and Wang. After that, the Gorenstein
Prüfer (G-Prüfer) domain is also studied in [30], which is defined to be a
coherent domain of weak Gorenstein global dimension at most one. Although
the concepts of G-Prüfer domains and G-Dedekind domains originate from the
Gorenstein homological algebra, these “low-dimensional” domains can be well
characterized by divisorial ideals of multiplicative ideal theory. The notion of
divisorial ideal is a classical one, and it was introduced in 1930s. Let A be a
fractional ideal of a domain R. Denote A−1 = {x ∈ qf(R) |xA ⊆ R}. Then an
ideal I of R is called divisorial if (I−1)−1 = I. It is proved in [30, Theorem 4.2]
that a domain R is G-Prüfer if and only if R is a coherent FGV-domain, where
a domain R is called an FGV-domain in [36] if every nonzero finitely generated
ideal is divisorial. Thus every G-Dedekind domain is G-Prüfer because a G-
Dedekind domain is precisely a Noetherian divisorial domain by [32, Theorem
11.7.7], where a domain R is called divisorial in [18] if every nonzero ideal is
divisorial. However, a G-Prüfer domain need not be G-Dedekind nor integrally
closed. This kind of G-Prüfer domains is constructed in [33, Example 2]. In
recent years, the G-Prüfer domains have attracted many research attentions,
and some nice properties of them are further obtained in [17, 20, 22, 34]. For
example, it follows from [17, Theorem 2.5] that a domain R is G-Prüfer if
and only if every finitely generated submodule of a projective R-module is
G-projective, and it is shown in [22, Corollary 2.6] that a domain of R is G-
Prüfer if and only if every finitely generated ideal of R is G-projective. So
the G-Prüfer domain can be viewed as a counterpart of the Prüfer domain in
Gorenstein homological algebra.

In Section 1 of this paper, we first study the copure projective modules over
an FGV-domain. We prove in Theorem 1 that a domain R is an FGV-domain
if every finitely generated torsion-free R-module is strongly copure projective.
By Example 3, it follows that the converse case of Theorem 1 is not true. It
is natural to ask when the converse case of Theorem 1 holds. To do this, we
characterize G-Prüfer domains by G-flat modules, and we prove in Theorem
6 that a domain R is G-Prüfer if and only if every submodule of a projective
R-module is G-flat, if and only if every ideal of R is G-flat. By this result, we
proved that a coherent domain R is an FGV-domain if every finitely generated
torsion-free R-module is strongly copure projective, if and only if every finitely
generated ideal of R is strongly copure projective. Thus a coherent domain is
G-Prüfer if and only if every finitely generated ideal of R is strongly copure
projective.

In Section 2, we study localizations of G-Prüfer domains by localizations
of injective modules. It is well-known that the localization of an injective
module is not necessarily injective. But for a coherent ring, we have that the
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localization of an FP-injective module is also FP-injective (Theorem 9), where
an R-module M is called FP-injective in [31] if Ext1R(N,M) = 0 for any finitely
presented R-module N . By this result, we get in Corollary 11 that a coherent
domain is G-Prüfer if and only if RP is G-Prüfer for any P ∈ Max(R).

In Section 3, we study the classicalD+M constructions of G-Prüfer domains.
For a classical D +M construction RDTF with D not a field, we prove that
R = D+M is G-Prüfer if and only if D is G-Prüfer and qf(D) = F . It is seen
that there are G-Prüfer domains that are neither G-Dedekind nor integrally
closed (Example 16). In particular, we give an example of non-integrally closed
G-Prüfer domains (i.e., a coherent FGV-domain) that is neither Noetherian nor
divisorial.

We next recall some notations and terminology in the Gorenstein homolog-
ical algebra. An R-module M is called Gorenstein projective (G-projective) in
[10] if there exists an exact sequence of projective R-modules

P : · · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · ·
with M ∼= ker(P 0 → P 1) and the functor Hom(−, Q) leaves P exact whenever
Q is a projective R-module. Dually, an R-module M is called Gorenstein
injective (G-injective) if there exists an exact sequence of injective R-modules

E : · · · −→ E1 −→ E0 −→ E0 −→ E1 −→ · · ·
with M ∼= ker(E0 → E1) and the functor Hom(E,−) leaves E exact whenever
E is an injective R-module. For an R-module M , the Gorenstein injective
and projective dimension of M are denoted by G-idR(M) and G-pdR(M),
respectively. It is shown in [5, Theorem 1.1] that for a ring R,

{G-pdR(M) |M is an R-module} = {G-idR(M) |M is an R-module}.
This common value is called the Gorenstein global dimension of R and denoted
by G-gl.dim(R). Accordingly, an R-module M is called Gorenstein flat (G-flat)
in [11] if there exists an exact sequence of flat R-modules

F : · · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · ·
with M ∼= ker(F 0 → F 1) and the functor E⊗R − leaves F exact whenever E
is an injective R-module. The Gorenstein flat dimension of an R-module M is
defined in terms of Gorenstein flat resolutions, denoted by G-fdR(M). As in
[5], the weak Gorenstein global dimension of a ring R is defined as

w.G-gl.dim(R) = sup{G-fdR(M) |M is an R-module}.
We now proceed to state and prove our main results.

2. Copure projective modules over FGV-domains

We start by the following observation for FGV-domains.

Theorem 1. Let R be a domain. Assume that every finitely generated torsion-
free R-module is strongly copure projective. Then
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(1) every finitely generated torsion-free R-module is reflexive, and
(2) R is an FGV-domain.

Proof. (1) Let M be a finitely generated torsion-free R-module. Then M is a
strongly copure projective module, and hence Ext1R(M,R) = 0. Let

0 // A // P // M // 0

be an exact sequence of R-modules where P is finitely generated and projective.
Applying the functor HomR(−, R) to this sequence, we have the following exact
sequence

0 // M∗ // P ∗ // A∗ // 0.

Since P ∗ is finitely generated, A∗ is finitely generated. Hence A∗ is a finitely
generated torsion-free R-module. By the hypothesis, A∗ is strongly coupure
projective. And so Ext1R(A

∗, R) = 0. Thus we have the following exact se-
quence

0 // A∗∗ // P ∗∗ // M∗∗ // 0.

Consider the following diagram with exact rows:

0 // A

α

��

// P

∼=

// M

β

��

// 0

0 // A∗∗ // P ∗∗ // M∗∗ // 0

By Snake Lemma, we have cokβ = 0. So 0 // ker(β) // M // M∗∗ // 0
is an exact sequence R-modules. Since M is a finitely generated torsion-free
module, rank(M) = rank(M∗∗) by [32, Theorem 7.1.2(1)]. It forces the rank
of ker(β) to be zero. Thus ker(β) is a torsion module. Also since ker(β) is a
submodule of M , ker(β) is torsion-free. Hence ker(β) = 0. Thus M ∼= M∗∗. It
follows that M is a reflexive module.

(2) Let I be a finitely generated ideal of R. Then I is reflexive by (1). Hence
I = Iv, and so R is an FGV-domain. □

Corollary 2. The following statements are equivalent for a domain R.

(1) R is a Prüfer domain.
(2) R is integrally closed and every finitely generated torsion-free R-module

is strongly copure projective.
(3) w.gl.dim(R) < ∞ and every finitely generated torsion-free R-module is

strongly copure projective.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are obvious because every projective module is
strongly copure projective.

(2) ⇒ (1) By Theorem 1, R is an FGV-domain. Since R is integrally closed,
R is a Prüfer domain by [36, Corollary 8].

(3) ⇒ (1) Since w.gl.dim(R) < ∞, every strongly copure projective is projec-
tive by [14, Proposition 3.4]. Thus by (3), every finitely generated torsion-free
R-module is projective. So R is a Prüfer domain. □
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Now we give an example to show that the converse case of Theorem 1 is not
true.

Example 3. Let Q (resp., R, C) be the field of rational numbers (resp., real
numbers, complex numbers). Set A = C[X,Q+], where Q+ = {r ∈ Q | r ≥ 0}.
Then P = {f ∈ A | f has zero constant term} is a prime ideal of A. Set
S = A\P and R = R + PS . It follows from [33, Example 11] that R is a non-
integrally closed FGV-domain with w.gl.dim(R) = 2. Hence every strongly
copure projective R-module is projective by [14, Proposition 3.4]. If every
finitely generated torsion-free module over R is strongly copure projective, then
every finitely generated torsion-free R-module is projective. It means that R
is Prüfer and hence integrally closed. Which is impossible.

It is natural to ask when the converse of Theorem 1 holds. We next char-
acterize G-Prüfer domains by G-flat modules. By this characterization, we
prove that a coherent domain R is an FGV-domain if and only if every finitely
generated torsion-free R-module is strongly projective.

Let R be a ring. As in [8], IFD(R) is defined to be sup{fdRE |E is an in-
jective R-module}. In fact, there is an important relationship between IFD(R)
and w.G-gl.dim(R).

Lemma 4. Let R be a ring and let n be a positive integer. Then w.G-gl.dim(R)
≤ n if and only if IFD(R) ≤ n.

Proof. See [24, Theorem 2.12]. □

Lemma 5. Let R be domain with w.G-gl.dim(R) ≤ 1. Then R is coherent.

Proof. Since w.G-gl.dim(R) ≤ 1, IFD(R) ≤ 1 by Lemma 4. Let a be a non-
zero non-unit of R. Then IFD(R/(a)) = 0 by [20, Lemma 2.3]. Hence R/(a)
is an IF-ring. And so R/(a) is a coherent ring by [25, Proposition 2.3]. By
[20, Lemma 2.1], it follows that R is a coherent domain. □

It is shown in [20, Corollary 2.4] that a domain is G-Prüfer if and only
if every finitely generated ideal is G-flat. However, the proof of (1) ⇒ (2)
of [20, Corollary 2.4] depends on the condition that the class of Gorenstein
flat modules is projectively resolving. Next we can give a new proof based on
Bennis’ results in [3]. It is seen that a domain R is G-Prüfer if and only if every
submodule of a projective R-module is G-flat, if and only if every submodule
of a flat R-module is G-flat.

Let X be a class of R-modules. As in [3], the class X is said to be closed
under extension if for every short exact sequence of R-modules

0 // A // B // C // 0,

A, C ∈ X implies B ∈ X . The class X is said to be projectively resolving
if X contains all projective R-module, and for every short exact sequence of

R-modules 0 // A // B // C // 0 with C ∈ X , A ∈ X and B ∈ X
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are equivalent. For a ring R, we denote the class of all G-flat R-modules by
G F (R). It is proved in [3, Theorem 2.3] that G F (R) is closed under extension
if and only if G F (R) is projectively resolving. Thus by [3, Proposition 2.2],
G F (R) is projectively resolving if R is a coherent ring. By using this result,
we now start to study G-flat properties over G-Prüfer domains.

Theorem 6. The following statements are equivalent for a domain R.

(1) R is a G-Prüfer domain.
(2) IFD(R) ≤ 1.
(3) w.G-gl.dim(R) ≤ 1.
(4) Every submodule of a projective R-module is G-flat.
(5) Every finitely generated torsion-free R-module is G-flat.
(6) Every ideal of R is G-flat.
(7) Every finitely generated ideal of R is G-flat.
(8) Every submodule of a flat R-module is G-flat.
(9) Every torsion-free R-module is G-flat.
(10) Every submodule of a G-flat R-module is G-flat.

Proof. (1) ⇔ (3) This follows from Lemma 5.
(2) ⇔ (3) This follows from Lemma 4.
(3) ⇒ (4) Let N be a submodule of a projective R-module P . Then there

exists an exact sequence

0 // N // P // C // 0,

where C = P/N . Since w.G-gl.dim(R) ≤ 1, it means that G-fd(C) ≤ 1. Hence
we have the following exact sequence

0 // A // B // C // 0,

where A and B are G-flat R-modules. Since P is projective, there is a ho-
momorphism g : P → B such that the following diagram of exact rows are
commutative:

0 // N //

��

P

g

��

// C // 0

0 // A // B // C // 0
Thus by Schanuel Lemma, we get the following exact sequence

(∗) 0 // N // A⊕ P // B // 0.

SinceA is G-flat, A⊕P is G-flat by [19, Proposition 3.2]. Since w.G-gl.dim(R) ≤
1, R is a coherent domain by Lemma 5. Hence R is GF-closed by [3, Proposi-
tion 2.2 (1)]. So the class G F (R) is projectively resolving by [3, Theorem 2.3].
It is seen in (∗) that N is G-flat.

(4) ⇔ (5) It is clear because every finitely generated torsion-free R-module
can be embedded in a free R-module.

(5) ⇒ (6) ⇒ (7) It is clear.
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(7) ⇒ (2) Let E be an injective R-module. Let I be a finitely generated

ideal of R. Then by (7), I is a G-flat ideal of R. Hence TorR1 (I, E) = 0

by [3, Lemma 2.4]. Consider an exact sequence 0 // I // R // R/I // 0.

Then TorR2 (R/I,E) ∼= TorR1 (I, E) = 0. Hence fdR(E) ≤ 1. So IFD(R) ≤ 1.
(4) ⇒ (8) Let N be a submodule of a flat R-module F . Set C := F/N .

Pick an exact sequence 0 // A // P // C // 0, where P is projective and

A = ker(P → C). Then by (4), A is G-flat. Now consider the following
commutative diagram:

0 // A //

��

P

g

��

// C // 0

0 // N // F // C // 0

Then by Schanuel Lemma, we get the following exact sequence

0 // A // N ⊕ P // F // 0.

By [3, Lemma 2.5], it follows that N ⊕ P is G-flat. (4) ⇔ (1) gives that R is
coherent. Thus by [19, Theorem 3.7], it follows that N is G-flat.

(8) ⇔ (10) follows from [3, Lemma 2.4].
(8) ⇒ (9) Let M be a torsion-free R-module and let K be the quotient field

of R. Then M → K ⊗R M is monomorphic. Since K ⊗R M is a linear space
over K, K ⊗R M is isomorphic to a direct sum of some K. Hence K ⊗R M is
a flat R-module. Thus M is G-flat by (8).

(9) ⇒ (6) It is obvious. □

Recall from [31] that an R-module M is called FP-injective if Ext1R(N,M) =
0 for any finitely presented R-module N . Accordingly, the FP-injective dimen-
sion of M , denoted by FP-idR(M), is defined to be the smallest n ≥ 0 such
that Extn+1

R (N,M) = 0 for all finitely presented R-modules N (if no such n
exists, set FP-idR(M) = ∞). By FP-injective dimension, an n-FC-ring in [9]
is defined to be a coherent ring with FP-idR(R) ≤ n. The 0-FC rings are the
so-called FC-rings.

Theorem 7. The following statements are equivalent for a coherent domain
R.

(1) Every finitely generated torsion-free R-module is strongly copure pro-
jective.

(2) Every submodule of a projective R-module is strongly copure projective.
(3) Every finitely generated ideal of R is strongly copure projective.
(4) R is an FGV-domain.

Proof. (1) ⇒ (2) ⇒ (3) It is clear.
(3) ⇒ (4) Let I be a finitely generated ideal of R. Then I is a finitely

presented ideal because R is a coherent domain. Hence by (3), I is a finitely
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presented copure projective ideal of R. So I is copure flat by [14, Proposition
3.7(1)]. Consider the exact sequence of R-modules

0 // I // R // R/I // 0.

For any injective R-module E, we have TorR2 (R/I,E) ∼= TorR1 (I, E) = 0. It
follows that fdR(E) ≤ 1. Hence IFD(R) ≤ 1. And so R is a G-Prüfer domain
by Theorem 6. By [30, Theorem 4.2], it follows that R is an FGV-domain.

(4) ⇒ (1) Since R is a coherent FGV-domain, R is a G-Prüfer domain by
[30, Theorem 4.2]. Let M be a finitely generated torsion-free module. Then
M is G-flat by Theorem 6. Since R is a coherent domain, M is a finitely
presented module. Thus M is a finitely presented G-flat module. Also since
R is a G-Prüfer domain, R is a 1-FC domain by [30, Theorem 4.2]. So R is
a finitely presented (strongly) copure flat module by [13, Theorem 2.12]. By
[14, Proposition 3.8], it follows that M is (strongly) copure projective. □

3. Localization of injective modules and G-Prüfer domains

In this section, we study the localization of G-Prüfer domains by using The-
orem 6. Firstly, we have the following observation for the flat dimensions of
injective modules.

Proposition 8. Let R be a ring and let P be a prime ideal of R. Then
IFD(RP ) ≤ IFD(R).

Proof. Without loss of generality, we assume that IFD(R) = n < ∞. Let E
be an injective RP -module. Then E as an R-module is also injective. Hence
fdR(E) ≤ n. Since RP is a flat R-module, we have fdRP

(E) = fdR(E) by [32,
Corollary 3.8.6]. It follows that fdRP

(E) ≤ n. So IFD(RP ) ≤ n = IFD(R). □

It is well-known that the localization of an injective module is not necessarily
injective (See [7, Theorem 25] and [6, Example 1]). But we have the following
result for a coherent ring.

Theorem 9. Let R be a coherent ring. If E is an FP-injective R-module, then
ES is an FP-injective RS-module for any multiplicatively closed set S of R.

Proof. Let S be a multiplicatively closed set of R. Then RS is a coherent ring.
Let IS be a finitely generated ideal of RS , where I is a finitely generated ideal

of R. Consider the exact sequence of R-modules 0 // I // R // R/I // 0.

Applying the functor HomR(−, E) to this exact sequence, we get the following
exact sequence

HomR(R,E) → HomR(I, E) → Ext1R(R/I,E) → 0.

Thus we have an exact sequence of RS-modules

HomR(R,E)S → HomR(I, E)S → Ext1R(R/I,E)S → 0.
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Also since 0 → IS → RS → RS/IS → 0 is an exact sequence of RS-module, we
have the following exact sequence of RS-modules

HomRS
(RS , ES) → HomRS

(IS , ES) → Ext1RS
(RS/IS , ES) → 0.

Consider the following diagram with exact rows:

HomR(R,E)S

θR

��

// HomR(I, E)S

θI

��

// Ext1R(R/I,E)S

θ1
��

// 0

HomRS
(RS , ES) // HomRS

(IS , ES) // Ext1RS
(RP /IS , ES) // 0

It is clear that θR is an isomorphism. Since R is a coherent ring, I is a
finitely presented ideal. Hence θI is an isomorphism by [32, Theorem 2.6.16(1)].
By Five Lemma, it follows that θ1 is also an isomorphism. Since E is FP-
injective and R/I is finitely presented, we have Ext1R(R/I,E) = 0. So 0 =
Ext1R(R/I,E)S ∼= Ext1RS

(RS/IS , ES). Thus ES is an FP-injective RS-module
by [31, Lemma 3.1]. □

Theorem 10. The following statements are equivalent for a coherent ring R.

(1) IFD(R) ≤ n.
(2) sup{IFD(RP ) |P ∈ Spec(R)} ≤ n.
(3) sup{IFD(RP ) |P ∈ Max(R)} ≤ n.

Proof. (1) ⇒ (2) This follows from Proposition 8.
(2) ⇒ (3) Trivial.
(3) ⇒ (1) Suppose that sup{IFD(RP ) |P ∈ Max(R)} ≤ n. Consider the

following exact sequence of R-modules,

0 // Fn
// Fn−1

// · · · // F0
// E // 0,

where F0, F1, . . . , Fn−1 are flat. Let P be any maximal ideal of R. Then we
have the following exact sequence of RP -modules:

0 // (Fn)P // (Fn−1)P // · · · // (F0)P // EP
// 0,

where (F0)P , (F1)P ,. . . ,(Fn−1)P are flat RP -modules. Since R is coherent, EP

is an FP-injective RP -module by Theorem 9. Since IFD(RP ) ≤ n, fdRP
(EP ) ≤

n by [13, Theorem 3.8]. Hence (Fn)P is a flat RP -module. Since P in Max(R)
is arbitrary, we conclude that Fn is a flat R-module. Thus IFD(R) ≤ n. □

Corollary 11. A coherent domain R is G-Prüfer if and only if RP is G-Prüfer
for any P ∈ Max(R).

Proof. By Theorem 6, R is G-Prüfer if and only if IFD(R) ≤ 1. By Theorem 6
and Theorem 10, it follows that R is G-Prüfer if and only if R is coherent and
RP is G-Prüfer for any P ∈ Max(R). □

Corollary 12. A domain R is G-Dedekind if and only if R is Noetherian and
RP is G-Dedekind for any P ∈ Max(R).
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Proof. By [30, Corollary 4.3], R is a G-Dedekind domain if and only if R is a
Noetherian G-Prüfer domain. Thus by Corollary 11, R is G-Dedekind if and
only if R is Noetherian and RP is G-Dedekind for any P ∈ Max(R). □

We do not know that the coherent condition in Corollary 11 is superfluous.
Hence we have the following question.

Quesition 13. Is a domainRG-Prüfer ifRP is G-Prüfer for each P ∈ Max(R)?

By Example 14, it is seen that the Noetherian condition in Corollary 12 is
essential.

Example 14. Let R be an almost Dedekind domain but not a Dedekind do-
main ([12, Example 3.4.1]). Then R is not Noetherian and RP is Dedekind for
any P ∈ Max(R). Hence RP is G-Dedekind for any P ∈ Max(R). But R is
not G-Dedekind by [32, Theorem 11.7.7] because R is not Noetherian. So the
Noetherian condition in Corollary 11 is essential.

4. The D + M construction of G-Prüfer domains

Let

R //

π
��

T

π
��

D // F
be a pullback of rings, where T is a domain, M is a maximal ideal of T ,
F = T/M , π is the natural projection, and D is a proper subring of F . Then
R = π−1(D) is a proper subring of T , and the commutative diagram RDTF
is called a Milnor square. In particular, if T = V is a valuation domain of the
form F + M , where F is a field and M is the maximal ideal of V , then the
Milnor square is called classical D +M construction.

In [33, Theorem 1(1)], it is shown that for a classical D + M construction
with D a field, R is a G-Prüfer domain if and only if [V/M : R/M ] = 2 and
M is a principal ideal of V . In this section, we study the classical D + M
construction in the case D is not a field.

Theorem 15. In the classical “D +M” construction with D not a field, R is
a G-Prüfer domain if and only if D is a G-Prüfer domain and qf(D) = F .

Proof. By [30, Theorem 4.2], a G-Prüfer domain is precisely a coherent FGV-
domain. By [27, Theorem 3.1(2)] and [28, Corollary 3.8(a)], it follows that R
is an FGV-domain if and only if D is an FGV-domain with qf(D) = F . Thus
by [15, Proposition 4.6]([16, Theorem 4.7]), R is a G-Prüfer domain if and only
if D is a G-Prüfer domain and qf(D) = F . □

By [33, Theorem 1(3)], we can construct abundant non-integrally closed G-
Dedekind domains in multiplicative ideal theory. For example, R + XC[[X]],

R + XC[X], Q + Q(
√
2)[[X]] and so on, where Q (resp., R, C) is the field
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of rational numbers (resp., real numbers, complex numbers). Via these G-
Dedekind domains, we can give abundant examples of G-Prüfer domains that
are neither G-Dedekind nor integrally closed.

Example 16. Choose any non-integrally closed G-Dedekind domain D as
above. Then D is a G-Prüfer domain by [30, Corollary 4.3]. Set qf(D) = Q.
Then R = D+XQ[[X]] is a G-Prüfer domain by Theorem 15. Since D is not a
field, R is a non-Noetherian domain. Hence R is not G-Dedekind by [32, The-
orem 11.7.7]. Since D is not integrally closed in Q, R is not integrally closed
[32, Theorem 8.6.6]. Thus R is a G-Prüfer domain that is neither G-Dedekind
nor integrally closed.

Remark 17. It is easy to check that the Krull dimensions of G-Prüfer domains
as in Example 16 are two. So, it is natural to ask whether there is a G-
Prüfer domain R with dim(R) > 2. In fact, if we take the valuation group
G = Z ⊕ Z ⊕ · · · ⊕ Z (n summands) as in [33, Example 2], then R is a non-
integrally closed G-Prüfer domain with dim(R) = n. By [27, Corollary 3.5],
this kind of G-Prüfer domain must be a non-Noetherian divisorial domain.

By [32, Theorem 11.7.7], a G-Dedekind domain is precisely a Noetherian
divisorial domain. It is natural to ask whether there is a non-integrally closed
G-Prüfer domain that is neither Noetherian nor divisorial. At last, we construct
this kind of G-Prüfer domain.

Example 18. Choose A a non-integrally closed Noetherian local domain of
dimension one whose integral closure A is not a finitely generated A-module.
(See [29, E. 3.2, p. 206] or [1, Example 5]). Then by [26, Theorem 14.16],
there exists an analytically ramified local 1-Gorenstein domain D such that
A ⊂ D ⊂ Q where Q = qf(D). Hence D is divisiorial by [4, Proposition 1.5].
Since D is analytically ramified, the closure D is not finitely generated as D-
module by [26, Theorem 10.2]. So D is a non-integrally closed Noetherian local
divisorial domain of dimension one with non-finitely generated integral closure
D. Let R = D + XQ[[X]]. Then R is not divisiorial by [2, Example 2.11].
Since D is G-Dedekind, D is G-Prüfer. Hence R is G-Prüfer by Theorem 15.
Since D is not a field, R is non-Noetherian. Thus R is a non-integrally closed
G-Prüfer domain that is neither divisorial nor Noetherian.
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