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ON NONNIL-SFT RINGS

Ali Benhissi and Abdelamir Dabbabi

Abstract. The purpose of this paper is to introduce a new class of rings

containing the class of SFT-rings and contained in the class of rings with

Noetherian prime spectrum. Let A be a commutative ring with unit and I
be an ideal of A. We say that I is SFT if there exist an integer k ≥ 1 and a

finitely generated ideal F ⊆ I of A such that xk ∈ F for every x ∈ I. The
ring A is said to be nonnil-SFT, if each nonnil-ideal (i.e., not contained in

the nilradical of A) is SFT. We investigate the nonnil-SFT variant of some

well known theorems on SFT-rings. Also we study the transfer of this
property to Nagata’s idealization and the amalgamation algebra along

an ideal. Many examples are given. In fact, using the amalgamation

construction, we give an infinite family of nonnil-SFT rings which are not
SFT.

Introduction

In this paper, all rings are commutative with identity and the dimension of
a ring means its Krull dimension. Let A be a ring. We shall denote by Nil(A)
the nilradical of A and I ⊂ J means I is strictly contained in J for some sets
I, J . An ideal I of A is said to be SFT, if there exist an integer k ≥ 1 and a
finitely generated ideal F ⊆ I such that xk ∈ F for every x ∈ I. The ring A is
called SFT if each ideal of A is SFT. In [1], Arnold showed that if A is not an
SFT-ring, then dim(A[[X]]) = ∞. His result motivates us to study the Krull
dimension of the power series ring over an SFT-ring. In particular, it seems
natural to ask if the Krull dimension of (A/Nil(A))[[X]] is infinite whenever A
is not SFT. We give a negative answer to this question. In fact, we give a class
of non-SFT rings such that dim((A/Nil(A))[[X]]) is finite.

In [3], Badawi defined a ring to be nonnil-Noetherian if each nonnil-ideal
is finitely generated. It is obvious that Noetherian rings are both SFT-rings
and nonnil-Noetherian rings but the converse is not true. Now, it is natural to
investigate the relation between nonnil-Noetherian rings and SFT-rings, and it
turns out that the two concepts are independent from each other. For instance,
let A = (K[Xi, i ≥ 1])/⟨Xi

i , i ≥ 1⟩, where K is a field and X1, X2, . . . is a
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countably family of indeterminates. Then A is nonnil-Noetherian but not SFT.
Indeed, the ideal of A generated by {X̄i, i ≥ 1} is not SFT. Furthermore, each
non-Noetherian SFT-domain (even reduced ring) is not nonnil-Noetherian.

The main purpose of this paper is to integrate the concepts of nonnil-
Noetherian rings and the SFT-rings and to construct a new class of rings that
contains the both classes of nonnil-Noetherian rings and SFT-rings. For this,
we introduce a new class of rings called nonnil-SFT rings as follows: Let A
be a ring and I an ideal of A. We say that I is a nonnil-ideal if I ⊈ Nil(A).
The ideal I is said to be SFT, if there exist an integer k ≥ 1 and a finitely
generated ideal F ⊆ I of A such that xk ∈ F for every x ∈ I. The ring A is
called nonnil-SFT if each nonnil-ideal of A is an SFT-ideal. If Nil(A) = 0, then
the notion of nonnil-SFT rings coincides with that of SFT-rings. Clearly any
nonnil-Noetherian ring is a nonnil-SFT ring.

This paper consists of two sections (besides the introduction). In Section
1, we investigate some basic properties of nonnil-SFT rings. In fact, we give
a relation between nonnil-SFT rings and SFT-rings and study the Cohen-type
theorem for nonnil-SFT rings. We also show that a nonnil-SFT ring has a
Noetherian prime spectrum (i.e., satisfies the ascending chain condition for the
radical ideals). We show the stability of this concept via Nagata’s idealization
and the flat overring of a nonnil-SFT ring. It is well known that a valuation
domain is SFT if and only if each prime ideal is not idempotent. We show
an analogue result for nonnil-SFT chained rings. Also, we prove that if A
is a one dimensional chained ring, then A is nonnil-SFT if and only if it is
nonnil-Noetherian.

Section 2 of this paper is devoted to study the stability of the nonnil-SFT
property via some well known extensions (polynomial ring, power series ring
and the amalgamation construction). Among our results, we show that the
ring A ▷◁f J is nonnil-SFT if and only if the rings A and f(A) + J are nonnil-
SFT, under the assumption A ▷◁f J ∈ H, where f : A −→ B is a rings
homomorphism, J is a nonzero ideal of B and H = {A a ring such that Nil(A)
is a divided prime ideal of A}. We also give a class of non-SFT rings such that
dim((A/Nil(A))[[X]]) is finite. In fact, we show that if A is a finite dimensional
ring such that AM is a chained ring for every M ∈ Max(A) and if it is nonnil-
SFT which is not SFT, then dim((A/Nil(A))[[X]] is finite. Recall that a ring
A is called decomposable if it can be written in the form A = A1⊕A2 for some
nonzero rings A1 and A2. We give a necessary and sufficient condition to a
decomposable ring to be nonnil-SFT.

1. Nonnil-SFT rings

Definition 1.1. A ring A is called nonnil-SFT if each nonnil-ideal I (I ⊈
Nil(A)) of A is SFT, i.e., there exist an integer k ≥ 1 and a finitely generated
ideal F ⊆ I of A such that xk ∈ F for every x ∈ I.

Example 1.1. An SFT-ring is nonnil SFT.
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The converse of Example 1.1 is false. We will give a counterexample later.

Lemma 1.2. Let A be a ring. A maximal ideal among the nonnil-ideals of A
which are not SFT is a prime ideal.

Proof. Let F be the set of the nonnil-ideals which are not SFT and P be a
maximal element of F . It is clear that P is a nonnil-ideal. Assume that P is not
prime. Let a, b ∈ A\P such that ab ∈ P . We have P ⊂ P+aA and P ⊂ P+bA.
It is easy to see that P + aA and P + bA are nonnil-ideals. By maximality
of P , P + aA and P + bA are SFT. There exist x1, . . . , xs, y1, . . . , yr ∈ P and
n, k ∈ N∗ such that for every x ∈ P + aA and y ∈ P + bA, xn ∈ ⟨x1, . . . , xs, a⟩
and yk ∈ ⟨y1, . . . , yr, b⟩. Let α ∈ P . Since P ⊂ P + aA and P ⊂ P + bA, αn =∑s

i=1αixi+aγ1 and αk =
∑r

j=1βjyj+bγ2, where α1, . . . , αs, β1, . . . , βr, γ1, γ2 ∈
A. Thus

αnk = αnαk =

(
s∑

i=1

αixi + aγ1

) r∑
j=1

βjyj + bγ2


=

s∑
i=1

αi

r∑
j=1

βiyi + αibγ2

xi +

r∑
j=1

(aγ1βj)yj + (γ1γ2)(ab)

∈ ⟨x1, . . . , xs, y1, . . . , yr, ab⟩ ⊆ P

absurd because P is not SFT. Hence P is a nonnil prime ideal. □

Proposition 1.3. A ring A is nonnil-SFT if and only if each nonnil prime
ideal is SFT.

Proof. (⇐) Assume that A is not nonnil-SFT. Let F be the set of all nonnil
ideals of A which are not SFT. Thus F ̸= ∅. Let (Iλ)λ∈Λ be a totally ordered
family of (F ,⊆) and set I =

⋃
λ∈Λ Iλ. It is clear that I ⊈ Nil(A). Assume that

I is SFT. Then there exist a finitely generated ideal F ⊆ I of A and an integer
k ≥ 1 such that xk ∈ F for every x ∈ I. Since (Iλ)λ∈Λ is totally ordered,
there exists λ ∈ Λ such that F ⊆ Iλ. It yields that for every x ∈ Iλ ⊆ I,
xk ∈ F ⊆ Iλ. It follows that Iλ is an SFT-ideal, which contradicts the fact
that Iλ ∈ F . Therefore, I ∈ F . Hence (F ,⊆) is inductive. By Zorn’s lemma,
(F ,⊆) has a maximal element P . By Lemma 1.2, P is a nonnil prime ideal of
A absurd. Thus A is nonnil-SFT. □

The following example shows the difference between the concepts of SFT
and nonnil-SFT.

Example 1.2. Let K be a field, X = {X1, X2, . . .} a countably set of indeter-
minates over K, I = ⟨Xn

n , n ≥ 1⟩K[X] and A = K[X]/I. The ring A is not
SFT because the ideal ⟨X1, X2, . . .⟩/I is not SFT. On the other hand, the only
prime ideal of A is Nil(A), then A is nonnil-SFT.
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Recall that a ring A is called nonnil-Noetherian if each nonnil-ideal is finitely
generated. This class of rings was introduced by Badawi in [3], and he has
studied some basic properties of this rings. After, in [6] Hizem and Benhissi had
generalized some results of Badawi, and they had shown that this class of rings
have a principal role for the stability of the SFT property via the power series
ring. It is easy to see that a nonnil-Noetherian ring is nonnil-SFT. Following
[3], set H = {A a ring such that Nil(A) is a divided prime ideal of A}. In the
next example, we show that the class H is essential in the following proposition.

Proposition 1.4. Let A ∈ H. The following statements are equivalent:

(1) The ring A is nonnil-SFT.
(2) The ring A/Nil(A) is SFT.

Proof. (1) ⇒ (2) Let Q be a prime ideal of A/Nil(A). There exists a prime
ideal P of A such that Q = P/Nil(A). If P = Nil(A), then Q = 0̄ is SFT. Else
P is an SFT-ideal. It follows that Q is SFT.

(2) ⇒ (1) By Proposition 1.3, it suffices to show that each nonnil prime
ideal is SFT. Let P be a nonnil prime ideal of A. Then P/Nil(A) is an SFT-
ideal of A/Nil(A). Thus there exist k ∈ N∗ and x1, . . . , xn ∈ P such that
x̄k ∈ ⟨x̄1, . . . , x̄n⟩. As Nil(A)/Nil(A) = 0̄, we can assume that for every i
between 1 and n, x̄i ̸= 0̄ (i.e., xi /∈ Nil(A)). Therefore, Nil(A) ⊂ ⟨xi⟩ for
each 1 ≤ i ≤ n. It yields that xk ∈ ⟨x1, . . . , xn⟩ + Nil(A) = ⟨x1, . . . , xn⟩.
Consequently, P is an SFT-ideal. □

Example 1.3. The hypothesis “Nil(A) is divided” can not be removed. Indeed,
let B be an SFT Prüfer domain, X,Y1, Y2, Y3, . . . a countably set of indeter-
minates over B, I = ⟨Y i

i , i ≥ 1⟩B[Yi, i ≥ 1] and A = (B[Yi, i ≥ 1]/I)[X].
We have Nil(A) = M [X], where M = ⟨Ȳi, i ≥ 1⟩(B[Yi, i ≥ 1]/I). Since
A/Nil(A) = A/M [X] ≃ ((B[Yi, i ≥ 1]/I)/M)[X] ≃ B[X] an SFT domain by
[8, Proposition 10]. It shows that Nil(A) is a prime ideal. The ring A is not
nonnil-SFT because the ideal J = ⟨X, Ȳi, i ≥ 1⟩ of A is not SFT. In fact, we
have X /∈ Nil(A), thus J ⊈ Nil(A). Assume that J is SFT. Thus there exist

k ≥ 1 and n ≥ 1 such that fk ∈ F = ⟨X, Ȳ1, . . . , Ȳn⟩A for each f ∈ J . Let
m > k+ n be an integer. It follows that Ȳ k

m ∈ F . Hence Y k
m ∈ ⟨Y1, . . . , Yn⟩+ I

in B[Yi, i ≥ 1] impossible. Thus A is not nonnil-SFT.

Proposition 1.5. The homomorphic image of a nonnil-SFT ring is nonnil-
SFT.

Proof. Let ϕ : A −→ B be a surjective homomorphism of rings. Assume that
the ring A is nonnil-SFT. Let Q be a nonnil-ideal of B. Then P = ϕ−1(Q) is
a nonnil-ideal of A. Indeed, there exists x ∈ Q \ Nil(B). Since ϕ is surjective,
there exists y ∈ ϕ−1({x}) ⊆ P . If there exists n ≥ 1 such that yn = 0, then
xn = ϕ(yn) = 0 absurd. Thus P is a nonnil-ideal. By hypothesis, P is SFT.
Consequently, there exist n ≥ 1 and a finitely generated ideal F ⊆ P of A such
that xn ∈ F for each x ∈ P . Now let y ∈ Q. There exists x ∈ P such that
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y = ϕ(x). It yields that yn = ϕ(x)n = ϕ(xn) = ϕ(F ) ⊆ Q with ϕ(F ) a finitely
generated ideal of B. Hence Q is an SFT-ideal. It follows that the ring B is
nonnil-SFT. □

Example 1.4. Let A be a nonnil-SFT ring and I an ideal of A. Then the ring
A/I is nonnil-SFT.

Let M be an A-module. Recall that Nagata introduced the ring extension
of A, called the idealization of M in A, denoted by A(+)M , as the A-module
A×M endowed with a multiplicative structure defined by:

(a, x)(a′, x′) = (aa′, ax′ + a′x) for all a, a′ ∈ A and x, x′ ∈ M.

For more results see [7, page 2].

Proposition 1.6. Let A be a ring and M an A-module. Then the ring A(+)M
is nonnil-SFT if and only if the ring A is nonnil-SFT.

Proof. (⇒) Let ϕ : A(+)M −→ A be the canonical projection. It is well
known that ϕ is a surjective homomorphism. By Proposition 1.5, the ring A is
nonnil-SFT.

(⇐) Since every prime ideal of A(+)M has the form P (+)M , where P ∈
spec(A), it is easy to see that Nil(A(+)M) = Nil(A)(+)M . Let

Q ∈ spec(A(+)M)

be a nonnil-ideal. Then there exists P ∈ spec(A) such that Q = P (+)M . It
yields that there exist k ≥ 1 and a finitely generated ideal F ⊆ P of A such that
ak ∈ F for each a ∈ P . Let (a, x) ∈ Q. Thus (a, x)k+1 = (ak+1, (k + 1)akx) ∈
F (+)FM = ⟨F×{0}⟩(A(+)M) ⊆ Q. Hence Q is an SFT-ideal. By Proposition
1.3, A(+)M is nonnil-SFT. □

Theorem 1.7. Let A be a nonnil-SFT ring. Then each flat overring of A is
nonnil-SFT.

Proof. Let B be a flat overring of A. Then there exists a multiplicative system
of ideals S of A such that

B = {x ∈ T | there exists I ∈ S such that xI ⊆ A},
where T is the total quotient ring of A. Moreover, we can choose S such
that IB = B for each I ∈ S and for every Q ∈ spec(B), we have Q = PS ,
where P = Q ∩ A [2, Theorem 1.3]. Let Q ∈ spec(B) be a nonnil-ideal. Thus
P = Q ∩ A ⊈ Nil(A). Indeed, if P ⊆ Nil(A), then for each x ∈ Q there
exists I ∈ S such that xI ⊆ P . It yields that xIB ⊆ PB. It follows that
x ∈ PB ⊆ Nil(B) which shows that Q ⊆ Nil(B) absurd. As A is nonnil-
SFT, there exist k ≥ 1 and a finitely generated ideal F ⊆ P of A such that
xk ∈ F for every x ∈ P . Let x ∈ Q. There exists I ∈ S such that xI ⊆
P . Then for every a ∈ I, (xa)k ∈ F ⊆ FB. Since IB = B, there exist
b1, . . . , br ∈ B and c1, . . . , cr ∈ I such that 1 = c1b1 + · · · + crbr. Hence
1 = (c1b1 + · · · + crbr)

kr =
∑

finiteαiβ
k
i with αi ∈ B and βi ∈ I for each i.
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Consequently, xk = xk · 1 =
∑

finiteαi(xβi)
k ∈ FB ⊆ Q with FB a finitely

generated ideal of B. It yields that Q is an SFT-ideal. By Proposition 1.3, the
ring B is nonnil-SFT. □

Remark 1.8. We note that a ring A is SFT if and only if it is nonnil-SFT and
Nil(A) is an SFT-ideal. Indeed, let P be a prime ideal of A. If P ⊈ Nil(A)
it is SFT. If P ⊆ Nil(A), then P = Nil(A) and hence it is SFT. Thus A is an
SFT-ring. The other implication is clear.

Proposition 1.9. Let A and B be two rings. Then the product ring A×B is
nonnil-SFT if and only if the ring A×B is SFT if and only if the rings A and
B are SFT.

Proof. Since the ideals of A×B are of the form I ×J with I (resp. J) an ideal
of A (resp. B), it is easy to check that A×B is SFT if and only if A and B are
SFT. Therefore, it suffices to show that if A×B is nonnil-SFT, the rings A and
B are SFT. Without loosing of generality, it suffices to show that the ring A is
SFT. Let I be an ideal of A. It is simple to check that I×B is a nonnil-ideal of
A×B, then it is SFT. It follows that there exist k ≥ 1 and a finitely generated
ideal F × Q ⊆ I × B such that (a, b)k ∈ F × Q for every (a, b) ∈ I × B. It
yields that ak ∈ F for each a ∈ I. Since F ×Q is finitely generated in A×B,
F is a finitely generated ideal of A, which finishes the proof. □

Recall that a ring A is called with Noetherain spectrum (or spec(A) is Noe-
therian), if each prime ideal is the radical of a finitely generated ideal, equiva-
lently each radical ideal is the radical of a finitely generated ideal, that is also
equivalent to the ring A satisfies the ascending chain condition on the radical
ideals. For more results the reader can be referred to [10].

Proposition 1.10. Let A be a ring. If A is nonnil-SFT, then spec(A) is
Noetherian. Consequently, each ideal of A has a finitely many minimal primes.

Proof. It suffices to show that each prime ideal is the radical of a finitely gen-
erated ideal. Let P be a prime ideal of A. If P ⊈ Nil(A), then there exist

k ≥ 1 and a finitely generated ideal F ⊆ P such that xk ∈ F for each x ∈ P .
Thus P is the radical of F which is finitely generated. If P ⊆ Nil(A), then

P = Nil(A) =
√
⟨0⟩. □

Remark 1.11. The converse of Proposition 1.10 is false. Indeed, let V be a
finite dimensional non-SFT valuation domain. Since V has only finite number
of prime ideals, it has a Noetherian spectrum. But V is not SFT, hence it is
not nonnil-SFT because it is an integral domain.

Example 1.5. Let K be a field and A = K[[X
1
∞ ]] =

⋃∞
n=1K[[X

1
n ]]. Since

K[[X]] ⊂ A is an integral extension, then dim(A) = dim(K[[X]]) = 1. The ring

A is a quasi-local domain with a maximal ideal M = ⟨X 1
n , n ≥ 1⟩ =

√
⟨X⟩.
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Assume that M is an SFT ideal of A. Then there exist k ≥ 1 and n ≥ 1 such
that fk ∈ ⟨X,X

1
2 , . . . , X

1
n ⟩ for every f ∈ M . It yields that

X
1

n+1 = (X
1

k(n+1) )k ∈ ⟨X,X
1
2 , . . . , X

1
n ⟩.

It follows that X
1

n+1 =
∑n

i=1fiX
1
i , where f1, . . . , fn ∈ A. Consequently,

1

n+ 1
= v(X

1
n+1 ) ≥ min{v(fi) + v(X

1
i ), 1 ≤ i ≤ n} ≥ 1

n
,

where v is the natural valuation of A absurd. Hence A is not SFT. Thus A is
not nonnil-SFT since it is integral. But A has Notherian spectrum because it
has only two prime ideals.

Lemma 1.12. Let A be a ring, I and J be two ideals of A such that J ⊆ I. If
the ideals J and I/J are SFT in A and A/J , respectively, then the ideal I of
A is also SFT.

Proof. By hypothesis, there exist k ≥ 1 and x1, . . . , xn ∈ I such that x̄k ∈
⟨x̄1, . . . , x̄n⟩(A/J) for each x ∈ I. On the other hand, the ideal J is SFT. Then
there exist r ≥ 1 and a finitely generated ideal F ⊆ J of A such that yr ∈ F for
each y ∈ J . Let x ∈ I. There exist α1, . . . , αn ∈ A such that xk−

∑n
i=1αixi ∈ J .

Thus (xk −
∑n

i=1αixi)
r ∈ F . Which implies that xkr ∈ F + ⟨x1, . . . , xn⟩A.

Hence I is an SFT ideal of A. □

We recall that a ring A is called locally finite dimensional (LFD-ring) if each
prime ideal P of A has a finite height. That is equivalent to that for every
P ∈ spec(A), dim(AP ) is finite.

Theorem 1.13. Let A be a ring.

(1) If Nil(A) /∈ spec(A), the following conditions are equivalent:
(i) The ring A is nonnil-SFT.
(ii) The ring A is SFT.
(iii) The ring A/Nil(A) is SFT and each minimal prime ideal of A is

SFT.
(2) If Nil(A) ∈ spec(A) and A is LFD-ring, then A is nonnil-SFT if and

only if the ring A/Nil(A) is SFT and each height one prime ideal of A
is SFT.

Proof. (1) (i)⇒(ii) Each prime ideal of A is a nonnil-ideal. Thus it is SFT.
Hence the ring A is SFT.

(ii)⇒(iii) It is clear.
(iii)⇒(i) Let P be a nonnil-prime ideal of A and P0 ∈ Min(A) such that

P0 ⊆ P . Since Nil(A) ⊂ P0, we have the following isomorphism

(A/Nil(A))/(P0/Nil(A)) ≃ A/P0.

Since A/Nil(A) is an SFT ring, so is the ring A/P0. It yields that the ideal
P/P0 is SFT in the ring A/P0. Since P0 is minimal, it is an SFT ideal of A. By
Lemma 1.12, the ideal P is SFT. By Proposition 1.3, the ring A is nonnil-SFT.
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(2) (⇒) Since Nil(A) ∈ spec(A), Min(A) = {Nil(A)}. If P ∈ spec(A) is of
height 1, then Nil(A) ⊂ P . Thus P is SFT.

(⇐) Let P be a nonnil prime ideal. Since ht(P ) is finite, there exists a
height one prime ideal Q of A such that Nil(A) ⊂ Q ⊆ P . If P = Q, then P
is an SFT ideal. If P ̸= Q, we have (A/Nil(A))/(Q/Nil(A)) ≃ A/Q an SFT
domain. Hence P/Q is an SFT ideal of A/Q. As Q has a height one, it is SFT
by hypothesis. By Lemma 1.12, the ideal P is SFT. By Proposition 1.3, the
ring A is nonnil-SFT. □

Corollary 1.14. Let A be a chained ring with a maximal ideal M and has
dimension ≤ 1.

(1) If Nil(A) = M , then A is both nonnil-Noetherian and nonnil-SFT.
(2) If Nil(A) ̸= M , the following statements are equivalent:

(i) The ring A is nonnil-SFT.
(ii) The ring A is nonnil-Noetherian.
(iii) M is a principal ideal.

Proof. Since the ring A is chained, Nil(A) ∈ spec(A).
(1) It is clear that A ∈ H. Since A/Nil(A) is a field, by Proposition 1.4, the

ring A is nonnil-SFT and by [3, Theorem 2.2], the ring A is nonnil-Noetherian.
(2) (i)⇒(ii) We have A/Nil(A) is a one dimensional SFT valuation domain.

Then it is Noetherian. As A ∈ H by [3, Theorem 2.2], the ring A is nonnil-
Noetherian.

(ii)⇒(i) It is easy.
(ii)⇔(iii) See [4, Corollary 2.5]. □

It is well known that a valuation domain A is SFT if and only if for each
nonzero prime ideal P of A, P ̸= P 2. Analogously, we show the following result
for nonnil-SFT chained rings.

Theorem 1.15. Let A be a chained ring. Then A is nonnil-SFT if and only
if for each nonnil prime ideal P of A, P ̸= P 2.

Proof. It is clear that A ∈ H.
(⇒) As A/Nil(A) is an SFT valuation domain. Then for each nonzero

prime ideal Q of A/Nil(A), we have Q ̸= Q2. Let P ∈ spec(A) be a nonnil-
ideal. Thus P/Nil(A) is a nonzero prime ideal of A/Nil(A). Hence P/Nil(A) ̸=
(P/Nil(A))2 = P 2/Nil(A) (since A is chained, we have Nil(A) ⊆ P 2). It follows
that P ̸= P 2.

(⇐) Let Q be a nonzero prime ideal of A/Nil(A). There exists a prime ideal
P of A such that Nil(A) ⊂ P and Q = P/Nil(A). As Q2 = (P/Nil(A))2 =
P 2/Nil(A) ̸= P/Nil(A) = Q and A/Nil(A) a valuation domain, then A/Nil(A)
is an SFT ring. By Proposition 1.4, the ring A is nonnil-SFT. □
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2. Some extensions of a nonnil-SFT ring

We define the set H∗ to be the collection of all the rings A that satisfy the
following property: for each maximal ideal M of A, the ring AM is chained.
This set is not empty, because it contains the valuation domains, Prüfer do-
mains and chained rings etc.. Recall that this section is concerned by studying
the stability of the nonnil-SFT property via some extensions of a nonnil-SFT
ring. We start by studying the polynomial ring and the power series ring ex-
tensions of a such ring. But first we need to generalize some results of Kang
and Park in [8], which we need for Proposition 2.8. Note that the authors of
[8] have studied only the case of integral domains in the set H∗. We prove that
their result is still true for every A ∈ H∗. To do this we need the following
lemma. First we want to recall that a Prüfer domain A is an integral domain
such that AM is a valuation domain for each maximal ideal M of A.

Lemma 2.1. Let A ∈ H∗. Then for each P ∈ spec(A), A/P is a Prüfer
domain.

Proof. Let P ∈ spec(A). If A/P is a field, there is nothing to prove. Now
assume that A/P is not a field and let Q ∈ Max(A/P ). There exists M ∈
Max(A) such that P ⊆ M and Q = M/P . Consider the map ϕ : AM −→
(A/P )Q defined by ϕ(as ) = ā

s̄ for each a
s ∈ AM . It is clear that ϕ is well

defined and is a ring homomorphism. Let ā
s̄ ∈ (A/P )Q. Thus ā ∈ A/P and

s̄ ∈ (A/P ) \ Q. It follows that a ∈ A, s ∈ A and s̄ /∈ M/P . Therefore,
a ∈ A and s ∈ A \ M . Hence ϕ is surjective. Let a

s ∈ ker(ϕ). We have
ā
s̄ = ϕ(as ) = 0̄

1̄
. Consequently, there exists t̄ ∈ (A/P ) \ Q such that t̄ā = 0̄

in A/P . Thus ta ∈ P . Since t̄ /∈ Q = M/P , we have t /∈ M which follows
t /∈ P . Hence a ∈ P . We deduce that a

s ∈ PM . It yields that ker(ϕ) = PM and
(A/P )Q ≃ (AM )/(PM ). □

Theorem 2.2. Let A ∈ H∗. If A is SFT, so is A[[X1, . . . , Xn]].

Proof. Assume that A[[X1, . . . , Xn]] is not SFT. Then there exists Q1 ⊂ Q2 ⊂
· · · an infinite chain of prime ideals of A[[X1, . . . , Xn]][[Xn+1]]. Let P =

(
⋃+∞

i=1Qi)
⋂
A. As P is the radical of a finitely generated ideal, there exists

k ≥ 1 such that P ⊆ Qk. By [8, Lemma 1], P [[X1, . . . , Xn]][[Xn+1]] ⊆ Qk. Let
Q̄i = Qi/P [[X1, . . . , Xn]][[Xn+1]] and D = A/P . By Lemma 2.1, D is an SFT
Prüfer domain. On the other hand, Q̄k ⊂ Q̄k+1 ⊂ · · · is an infinite chain of
prime ideals of D[[X1, . . . , Xn]][[Xn+1]] and for each i ≥ k, Q̄i

⋂
D = 0. Thus

dim(D[[X1, . . . , Xn]][[Xn+1]]D\{0}) = ∞ contradicts [8, Lemma 7 and Remark
9]. Hence A[[X1, . . . , Xn]] is an SFT-ring. □

Proposition 2.3. Let A ∈ H∗ be an SFT ring. If Nil(A) ∈ spec(A), then

(1) dim(A[[X1, . . . , Xn]]) = ndim(A) + 1 if dim(A) is finite.
(2) dim(A[[X1, . . . , Xn]]) = ∞ elsewhere.
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Proof. (1) By Lemma 2.1, D = A/Nil(A) is a Prüfer domain. As D is SFT, by
[8, Theorem 14], dim(D[[X1, . . . , Xn]]) = ndim(D)+1 = ndim(A)+1 because
dim(D) = dim(A). Since

D[[X1, . . . , Xn]] ≃ A[[X1, . . . , Xn]]/Nil(A)[[X1, . . . , Xn]]

and by [6, Corollary 2.5], Nil(A[[X1, . . . , Xn]]) = Nil(A)[[X1, . . . , Xn]], we have

dim(A[[X1, . . . , Xn]]) = dim(A[[X1, . . . , Xn]]/Nil(A[[X1, . . . , Xn]])

= ndim(A) + 1. □

Let A be a ring. Recall that the set A[X1]] · · · [Xn]] is a ring extension of A
where [X]] = [X] or [X]] = [[X]], is called the mixed extension of A. For more
results the reader is invited to visit [8].

Proposition 2.4. Let A ∈ H∗. If A is SFT, so is the mixed extension
A[X1]], . . . , [Xn]].

Proof. The proof is similar to the case of power series ring. □

Corollary 2.5. Let A ∈ H∗. If A is SFT, so is A[X1, . . . , Xn].

Example 2.1. Let A be an SFT Prüfer domain and I be an arbitrary ideal of
A. Then the rings (A/I)[X1, . . . , Xn] and (A/I)[[X1, . . . , Xn]] are SFT. Indeed,
it is clear that A/I is SFT. Now we are going to show that A/I ∈ H∗. Let
Q ∈ spec(A/I). There exists P ∈ spec(A) such that I ⊆ P and Q = P/I. We
consider the map ϕ : AP −→ (A/I)Q defined by ϕ(as ) =

ā
s̄ . As in the proof of

Lemma 2.1, we show that ϕ is well defined and it is an homomorphism. Let
ā
s̄ ∈ (A/I)Q. Then ā ∈ A/I and s̄ ∈ (A/I) \ Q. It yields that a ∈ A and
s ∈ A \P . It follows that a

s ∈ AP and ā
s̄ = ϕ(as ). Consequently, ϕ is surjective.

Hence (A/I)Q is chained as the homomorphic image of a (valuation) chained
ring. Which shows that A/I ∈ H∗. We deduce the result by Theorem 2.2 and
Corollary 2.5.

Note that the result of Example 2.1 can be deduced from [8, Proposition
10].

Remark 2.6. Let A be a ring. If A is nonnil-SFT which is not SFT, then
Nil(A) ∈ spec(A). Indeed, if Nil(A) /∈ spec(A), then each prime ideal is a
nonnil-ideal and hence it is SFT. It follows that the ringA is SFT, contradiction.

Corollary 2.7. Let A ∈ H∗ be a finite dimensional ring. If A is nonnil-SFT
which not SFT, then there exists an infinite chain of prime ideals

Q1 ⊂ Q2 ⊂ · · ·

of A[[X]] such that for each k ≥ 1, Nil(A)[[X]] ⊈ Qk and dim((A/Nil(A))[[X]])
is finite.
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Proof. By Proposition 1.5, the ring A/Nil(A) is SFT. By Lemma 2.1 and Re-
mark 2.6, A/Nil(A) is an SFT Prüfer domain. By Proposition 2.3,

dim((A/Nil(A))[[X]]) = dim(A) + 1.

On the other hand, since A is not SFT, there exists an infinite chain of prime
ideals Q1 ⊂ Q2 ⊂ · · · of A[[X]]. Now, assume that there exists k ≥ 1 such
that Nil(A)[[X]] ⊆ Qk. Then Qk/Nil(A)[[X]] ⊂ Qk+1/Nil(A)[[X]] ⊂ · · · is an
infinite chain of prime ideals of A[[X]]/Nil(A)[[X]] ≃ (A/Nil(A))[[X]] absurd.

□

Proposition 2.8. Let A ∈ H∗. The following conditions are equivalent:

(1) The ring A is nonnil-SFT and the ideal Nil(A) is SFT.
(2) The ring A is SFT.
(3) The ring A[X] is SFT.
(4) The ring A[X] is nonnil-SFT.
(5) The ring A[[X]] is SFT.
(6) The ring A[[X]] is nonnil-SFT.

Proof. (1)⇔(2) It follows from Remark 1.8.
(2)⇒(3) It follow from Corollary 2.5.
(3)⇒(4) It is clear.
(4)⇒(1) Let I be an ideal of A. We consider the ideal J = ⟨I,X⟩ of A[X].

By hypothesis, J is SFT. Then there exist k ≥ 1 and a finitely generated ideal
F ⊆ J of A[X] such that fk ∈ F for each f ∈ J . Let L = {f(0) | f ∈ F}. It is
clear that L is a finitely generated ideal of A and that for every a ∈ I, ak ∈ L.
Hence I is an SFT ideal of A. It follows that the ring A is SFT.

(2)⇒(5) It follow from Theorem 2.2.
(5)⇒(6) It is clear.
(6)⇒(1) The same proof as the implication (4)⇒(1). □

A ring A is called decomposable if it can be written in the form A = A1 ⊕
A2, where A1 and A2 are two nonzero rings. The decomposition of A is not
unique and for each decomposition A = A1 ⊕ A2, we define the two following
projections, π1 : A −→ A1 and π2 : A −→ A2 by π1(x) = x1 and π2(x) = x2

for each x = x1 + x2 ∈ A. It is clear that A1 = π1(A), A2 = π2(A) and A =
π1(A)⊕π2(A). Therefore, we can describe the set of rings of the decomposition
of A by their associated projections, i.e., a family {πi, i ∈ Λ} of epimorphisms
from A in πi(A) with πi(A) ̸= {0} for every i ∈ Λ, and for each i ∈ Λ, there
exists j ∈ Λ such that A = πi(A)⊕ πj(A).

Theorem 2.9. Let A be a decomposable ring and {πi, i ∈ Λ} the set of canon-
ical epimorphisms from A to each component of a decomposition of A. The
following statements are equivalent:

(1) The ring A is SFT.
(2) The ring A is nonnil-SFT.
(3) For each i ∈ Λ, the ring πi(A) is SFT.
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(4) If e ∈ A\{0, 1} is an idempotent element, then each ideal of A contained
in ⟨e⟩ is SFT.

Proof. (1)⇒(2) It is clear.
(2)⇒(3) Let i ∈ Λ. Then A = πi(A) ⊕ πj(A) for some j ∈ Λ. Let I be

an ideal of πi(A). We have I ⊕ πj(A) is a nonnil-ideal of A. It follows that
I⊕πj(A) is SFT. There exist k ≥ 1 and a finitely generated ideal F ⊆ I⊕πj(A)
of A such that x ∈ I ⊕ πj(A), xk ∈ F . Consequently, xk ∈ πi(F ) for every
x ∈ I, with πi(F ) is a finitely generated ideal of πi(A) contained in I. Hence
πi(A) is an SFT ring.

(3)⇒(4) Let e ∈ A \ {0, 1} be an idempotent element and I be an ideal of
A contained in ⟨e⟩. We have A = ⟨e⟩ ⊕ ⟨1− e⟩. By hypothesis, the ring ⟨e⟩ is
SFT. Thus there exist k ≥ 1 and a finitely generated ideal F ⊆ I of ⟨e⟩ such
that xk ∈ F for each x ∈ I. As the ideal F ⊕{0} of A is finitely generated and
for every x ∈ I, xk ∈ F ⊆ F ⊕ {0}, the ideal I of A is SFT.

(4)⇒(1) Let I be an ideal of A. Since A is decomposable, A = ⟨e⟩ ⊕ ⟨1− e⟩
for some idempotent element e ∈ A \ {0, 1}. It yields that I = Ie ⊕ I1−e, where
Ie and I1−e are two ideals of ⟨e⟩ and ⟨1− e⟩, respectively. There exist i, j ∈ Λ
such that ⟨e⟩ = πi(A) and ⟨1− e⟩ = πj(A). Consequently, there exist k, r ≥ 1
and a finitely generated ideals E ⊆ Ie and F ⊆ I1−e of A such that for every
x ∈ Ie and y ∈ I1−e, x

k ∈ πi(E) = E and yr ∈ πj(F ) = F . Let a ∈ I. Set
a = x+ y with x ∈ Ie and y ∈ I1−e. Hence

ak+r =

k+r∑
i=0

Ci
k+ry

ixk+r−i =

r∑
i=0

Ci
k+ry

ixk+r−i
k+r∑

i=r+1

Ci
k+rx

k+r−iyi ∈ E ⊕ F,

where E⊕F is a finitely generated ideal of A. Therefore, A is an SFT ring. □

Corollary 2.10. Let (Ai)i∈Λ be a family of rings with cardinality at least
2. We consider the product ring A =

∏
i∈Λ Ai. The following conditions are

equivalent:

(1) The set Λ is finite and for each i ∈ Λ, the ring Ai is SFT.
(2) The ring A is SFT.
(3) The ring A is nonnil-SFT.

Proof. (1)⇒(2) By induction using Proposition 1.9.
(2)⇒(3) It is clear.
(3)⇒(1) By Theorem 2.9, for each i ∈ Λ the ring Ai is SFT. Assume that

|Λ| = ∞. Consider the ideal I of A of all elements with finite support. Since
I is SFT, there exist k ≥ 1 and n ≥ 1 such that xk ∈ ⟨ei1 , . . . , ein⟩ for all
x ∈ I, where eir = (δir , j)j∈Λ, r = 1, . . . , n. Let r ∈ Λ\{i1, . . . , in}. Then er =
ekr ∈ ⟨ei1 , . . . , ein⟩. Consequently, supp(er) ⊆ {i1, . . . , in} which is impossible.
Hence Λ is finite. □
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Example 2.2. (1) Let n ≥ 2 and A1, . . . , An be a finite sequence of rings.
If there exists k ∈ {1, . . . , n} such that Ak is nonnil-SFT which is not
SFT, then the product ring A1 × · · · ×An is never nonnil-SFT.

(2) For each ring A, the product
∏∞

i=1 A is not nonnil-SFT.

Let f : A −→ B be a rings homomorphism and J an ideal of B. We recall
that the set

A ▷◁f J = {(a, f(a) + j), a ∈ A, j ∈ J}
is a subring of the product ring A×B called the amalgamation of A and B along
J . If J is an ideal of A, we will write A ▷◁ J = A ▷◁idA J , where idA : A −→ A
defined by idA(x) = x for every x ∈ A.

Remark 2.11. Let f : A −→ B be a rings homomorphism and J be a nonzero
ideal of B. Set Ā = A/Nil(A), B̄ = B/Nil(B) and J̄ = π(J) where π : B −→ B̄
the canonical epimorphism. We consider the map f̄ : Ā −→ B̄ defined by
f̄(ā) = f(a). It is clear that f̄ is well defined and it is a rings homomorphism.

By [11, Remark 2.6] (A ▷◁f J)/Nil(A ▷◁f J) ≃ Ā ▷◁f̄ J̄ .

If A ▷◁f J ∈ H, then Ā ▷◁f̄ J̄ ≃ (A ▷◁f J)/Nil(A ▷◁f J) is an integral
domain. If J̄ ̸= {0}, by [5, Proposition 2.10], f̄−1(J̄) = {0}. It yields that
f−1(J) ⊆ Nil(A).

If J̄ = {0}, then J ⊆ Nil(B). It follows that

Nil(A ▷◁f J) = Nil(A) ▷◁f J.

Let x ∈ f−1(J). If Nil(A ▷◁f J) ⊆ (x, 0)A ▷◁f J , then J = {0}, which is
impossible. Hence (x, 0)A ▷◁f J ⊆ Nil(A ▷◁f J). Thus x ∈ Nil(A).

Theorem 2.12. Let A and B be two rings, J ̸= {0} be an ideal of B and
f : A −→ B be a rings homomorphism. Assume that A ▷◁f J ∈ H. The
following statements are equivalent:

(1) The ring A ▷◁f J is nonnil-SFT.
(2) The rings A and f(A) + J are nonnil-SFT.

Proof. Using the same notations of Remark 2.11.
(1)⇒(2) It follows from Proposition 1.5.
(2)⇒(1) Let Ψ : f(A)+J −→ f̄(Ā)+ J̄ be the map defined by Ψ(f(x)+j) =

f̄(x̄) + j̄. Ψ is well defined and is a rings homomorphism as the restriction of

the canonical surjection from B :−→ B̄. Let x̄ ∈ f̄−1(J̄). We have f(x) =
f̄(x̄) ∈ J̄ . Then there exists j ∈ J such that f(x)− j ∈ Nil(B). Which implies
that there exists k ≥ 1 such that (f(x) − j)k = 0. It follows that f(xk) ∈ J .
Thus xk ∈ Nil(A) and consequently, x ∈ Nil(A). It shows that x̄ = 0̄ and hence

f̄(Ā)
⋂
J̄ = {0̄}. Now, let f(x)+ j ∈ ker(Ψ). Then f(x)+ j̄ = 0̄. It yields that

f(x) = 0̄ and j̄ = 0̄. Which implies that f(x), j ∈ Nil(B). Hence f(x) + j ∈
Nil(B)

⋂
(f(A) + J) = Nil(f(A) + J). Consequently, ker(Ψ) ⊆ Nil(f(A) + J).

The other inclusion is easy. Hence (f(A)+J)/Nil(f(A)+J) ≃ f̄(Ā)+ J̄ . As A
and f(A)+ J are nonnil-SFT, then Ā and f(A)+ J/Nil(f(A)+ J) ≃ f̄(Ā)+ J̄
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are nonnil-SFT rings. It follows that they are SFT since they are reduced. By
[9, Theorem 3.1], the ring Ā ▷◁f̄ J̄ is SFT. By Remark 2.11, A ▷◁f J/Nil(A ▷◁f

J) ≃ Ā ▷◁f̄ J̄ is an SFT ring. As A ▷◁f J ∈ H, by Proposition 1.4, the ring
A ▷◁f J is nonnil-SFT. □

In [11, Corollary 2.3], we have the following equivalence: A ∈ H if and only
if A ▷◁ Nil(A) ∈ H. By combining this result and Theorem 2.12, we get the
following corollary.

Corollary 2.13. Let A ∈ H. Then the ring A ▷◁ Nil(A) is nonnil-SFT if and
only if the ring A is nonnil-SFT.

Example 2.3. Let A ∈ H be a nonnil-SFT ring. For n ≥ 0, set An+1 =
An ▷◁ Nil(An), where A0 = A. Then {An, n ≥ 0} is an infinite set of nonnil-
SFT rings. Moreover, if A0 is not SFT, then for each n ≥ 0, the ring An is
nonnil-SFT which is not SFT.

Proposition 2.14. Let A be a ring and J be a nonnil-ideal of A. The following
statements are equivalent:

(1) The ring A ▷◁ J is nonnil-SFT.
(2) The ring A is SFT.
(3) The ring A ▷◁ J is SFT.

Proof. (1)⇒(2) Let I be an ideal of A. Then I ▷◁ J is a nonnil-ideal of A ▷◁ J ,
hence it is SFT. It follows that there exist k ≥ 1 and a finitely generated ideal
F ⊆ I ▷◁ J of A ▷◁ J such that for each (x, y) ∈ I ▷◁ J , (x, y)k ∈ F . Thus
xk ∈ π(F ) ⊆ I for every x ∈ I, with π(F ) a finitely generated ideal of A, where
π : A ▷◁ J −→ A is the first projection. Therefore, the ring A is SFT.

(2)⇒(3) It follows from [9, Theorem 3.1].
(3)⇒(1) It is clear. □

Proposition 2.15. Let A ⊆ B be a rings extension such that for each finitely
generated ideal I of A IB

⋂
A = I. If the ring B is nonnil-SFT, so is A.

Proof. Let I be a nonnil ideal of A. Since the ring B is nonnil-SFT and the
ideal IB of B is a nonnil-ideal, there exist k ≥ 1 and a finitely generated ideal
J ⊆ IB of B such that xk ∈ J for every x ∈ IB. Let F ⊆ I be a finitely
generated ideal of A such that J ⊆ FB. Hence xk ∈ J

⋂
A ⊆ FB

⋂
A = F for

every x ∈ I. It is follows that I is an SFT ideal of A. Which implies that the
ring A is SFT. □
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