TIGHT CLOSURES AND INFINITE INTEGRAL EXTENSIONS

  • Published : 1992.02.01

Abstract

All rings are commutative, Noetherian with identity and of prime characteristic p, unless otherwise specified. First, we describe the definition of tight closure of an ideal and the properties about the tight closure used frequently. The technique used here for the tight closure was introduced by M. Hochster and C. Huneke [4,5, or 6]. Using the concepts of the tight closure and its properties, we will prove that if R is a complete local domain and F-rational, then R is Cohen-Macaulay. Next, we study the properties of R$^{+}$, the integral closure of a domain in an algebraic closure of its field of fractions. In fact, if R is a complete local domain of characteristic p>0, then R$^{+}$ is Cohen-Macaulay [8]. But we do not know this fact is true or not if the characteristic of R is zero. For the special case we can show that if R is a non-Cohen-Macaulay normal domain containing the rationals Q, then R$^{+}$ is not Cohen-Macaulay. Finally we will prove that if R is an excellent local domain of characteristic p and F-ratiional, then R is Cohen-Macaulay.aulay.

Keywords