DOI QR코드

DOI QR Code

ON FINITENESS PROPERTIES ON ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES AND EXT-MODULES

  • Chu, Lizhong (Department of Mathematics Soochow University) ;
  • Wang, Xian (Department of Mathematics China University of Mining and Technology)
  • Received : 2013.01.16
  • Accepted : 2013.08.27
  • Published : 2014.03.01

Abstract

Let R be a commutative Noetherian (not necessarily local) ring, I an ideal of R and M a finitely generated R-module. In this paper, by computing the local cohomology modules and Ext-modules via the injective resolution of M, we proved that, if for an integer t > 0, dim$_RH_I^i(M){\leq}k$ for ${\forall}i$ < t, then $$\displaystyle\bigcup_{i=0}^{j}(Ass_RH_I^i(M))_{{\geq}k}=\displaystyle\bigcup_{i=0}^{j}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$$ for ${\forall}j{\leq}t$ and ${\forall}n$ >0. This shows that${\bigcup}_{n>0}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$ is a finite set for ${\forall}i{\leq}t$. Also, we prove that $\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1^{n_1},x_2^{n_2},{\ldots},x_i^{n_i})M)_{{\geq}k}=\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1,x_2,{\ldots},x_i)M)_{{\geq}k}$ if $x_1,x_2,{\ldots},x_r$ is M-sequences in dimension > k and $n_1,n_2,{\ldots},n_r$ are some positive integers. Here, for a subset T of Spec(R), set $T_{{\geq}i}=\{{p{\in}T{\mid}dimR/p{\geq}i}\}$.

Keywords

References

  1. N. Bourbaki, Commutative Algebra, Translated from the French. Hermann, Paris, Addison-Wesley Publishing Co., Reading, Mass., 1972.
  2. M. Brodmann, Asymptotic stability of $Ass_RM/I^nM$, Proc. Amer. Math. Soc. 74 (1979), no. 1, 16-18.
  3. M. Brodmann and L. T. Nhan, A finiteness result for associated primes of certain Ext-modules, Comm. Algebra 36 (2008), no. 4, 1527-1536. https://doi.org/10.1080/00927870701869543
  4. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1998.
  5. K. Khashyarmanesh, On the finiteness properties of ${\bigcup_{i}^{}}(Ass_RExt^n_R(R/a^i,M)$, Comm. Algebra 34 (2006), no. 2, 779-784. https://doi.org/10.1080/00927870500388091
  6. K. Khashyarmanesh and F. Khosh-Ahang, Asymptotic behaviour of certain sets of associated prime ideals of Ext-modules, Manuscripta Math. 125 (2008), 345-352. https://doi.org/10.1007/s00229-007-0152-9
  7. K. Khashyarmanesh and Sh. Salarian, Asymptotic stability of $Att_RTor^R_1(R/a^n,A)$, Proc. Edinb. Math. Soc. 44 (2001), no. 3, 479-483. https://doi.org/10.1017/S0013091500000134
  8. L. Melkersson and P. Schenzel, Asymptotic prime ideals related to derived functors, Proc. Amer. Math. Soc. 117 (1993), no. 4, 935-938. https://doi.org/10.1090/S0002-9939-1993-1124148-8
  9. R. Y. Sharp, Asymptotic behaviour of certain sets of attached prime ideals, J. London Math. Soc. 34 (1986), no. 2, 212-218.