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ON FINITENESS PROPERTIES ON ASSOCIATED PRIMES

OF LOCAL COHOMOLOGY MODULES AND EXT-MODULES

Lizhong Chu and Xian Wang

Abstract. Let R be a commutative Noetherian (not necessarily local)
ring, I an ideal of R and M a finitely generated R-module. In this
paper, by computing the local cohomology modules and Ext-modules
via the injective resolution of M , we proved that, if for an integer t > 0,
dimRHi

I
(M) ≤ k for ∀i < t, then

j⋃

i=0

(AssRHi
I(M))≥k =

j⋃

i=0

(AssRExtiR(R/In,M))≥k

for ∀ j ≤ t and ∀n > 0. This shows that
⋃

n>0(AssRExtiR(R/In,M))≥k

is a finite set for ∀ i ≤ t. Also, we prove that
r⋃

i=1

(AssRM/(xn1
1 , xn2

2 , . . . , xni

i )M)≥k=
r⋃

i=1

(AssRM/(x1, x2, . . . , xi)M)≥k

if x1, x2, . . . , xr is M -sequences in dimension > k and n1, n2, . . . , nr are
some positive integers. Here, for a subset T of Spec(R), set T≥i = {p ∈
T | dimR/p ≥ i }.

1. Introduction

Throughout this paper, let R be a commutative Noetherian ring and I an
ideal of R. Let M be a finitely generated R-module. For convenience, we use
the following notations: for a subset T of Spec(R), we set

T≥i := {p ∈ T | dimR/p ≥ i },

T>i := {p ∈ T | dimR/p > i },

Ti := {p ∈ T | dimR/p = i }.

It is well-known that the sequences of associated primes AssRM/InM and
AssRI

nM/In+1M , n = 1, 2, . . . eventually become constant for n >> 0 (see
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[2]). Dual to this results, Sharp has shown for the Artinian module A in [9] that
the sequences AttR(0 :A In) and AttR(0 :A In)/(0 :A In+1) do not depend on n
for n >> 0. Next, Melkersson and Schenzel [8] showed that, for each integer i,

the sets of prime ideals AssRTor
R
i (R/In,M) and AttRExt

i
R(R/In, A) become

independent of n for n >> 0. They also asked whether the set of prime ideals
⋃

n>0 AssRExt
i
R(R/In,M) is finite.

In 2001, Khashyarmanesh and Salarian [7] proved that AssRExt
1
R(R/In,M)

is independent of n for n >> 0. Afterwards, in [5], it was proved , for an integer
t, that if SuppRH

i
I(M) is finite for all i < t, then

⋃

n>0

(AssRExt
t
R(R/In,M))>1

is a finite set. Next, by using the notion of M-sequences in dimension > k,
Brodmann and Nhan [3] proved that, for an integer t > 0, if dimRH

i
I(M) ≤ k

for ∀i < t, then for ∀j ≤ t,
⋃

n>0(AssRExt
j
R(R/In,M))≥k is contained in the

finite set
⋃j

i=0 AssRExt
i
R(R/I,M). Moreover, in 2008, Khashyarmanesh and

Khosh-Ahang [6] proved that, for an integer t > 0, if dimRH
i
I(M) ≤ k for

∀i < t, then for ∀i ≤ t,
⋃

n>0

(AssRExt
i
R(R/In,M))≥k and

⋃

n>0

(SuppRExt
i−1
R (R/In,M))≥k

are two finite sets.
In this paper, by computing the local cohomology modules and Ext-modules

via the injective resolution of M , we proved that, for an integer t > 0, if
dimRH

i
I(M) ≤ k for ∀i < t, then

j
⋃

i=0

(AssRH
i
I(M))≥k =

j
⋃

i=0

(AssRExt
i
R(R/In,M))≥k

for ∀ j ≤ t and ∀n > 0. This shows that, for ∀ i ≤ t,

⋃

n>0

(AssRExt
i
R(R/In,M))≥k and

t
⋃

i=0

(AssRH
i
I(M))≥k

are both contained in
t
⋃

i=0

AssRExt
i
R(R/I,M).

Also, by investigating the relationship among M -sequences in dimension > k,
filter regular sequence and regular sequence, we prove that

r
⋃

i=1

(AssRM/(xn1

1 , xn2

2 , . . . , xni

i )M)≥k =

r
⋃

i=1

(AssRM/(x1, x2, . . . , xi)M)≥k
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if x1, x2, . . . , xr is M -sequences in dimension > k and n1, n2, . . . , nr are some
positive integers. This shows that

(AssRM/(xn1

1 , xn2

2 , . . . , xnr

r )M)≥k \
r−1
⋃

i=1

(AssRM/(xn1

1 , xn2

2 , . . . , xni

i )M)≥k

is independent of n1, n2, . . . , nr for n1, n2, . . . , nr large.

2. Auxiliary and preliminary results

Let N be a non-zero R-module. The Krull dimension dimRN of N is the
supremum of lengths of chains of prime ideals in SuppRN if this supremum
exists, and ∞ otherwise. In the case when N is finitely generated, this is equal
to dimRR/(0 : N). If R-module N = 0, we set dimRN = −1.

Lemma 2.1. Assume that 0 −→ N1 −→ N2 −→ N3 −→ 0 is an exact sequence

of R-modules. Then dimRN2 = Max{dimR N1, dimR N3}.

Proof. By virtue of the exactness of localization, it clear that

SuppRN2 = SuppRN1 ∪ SuppRN3.

Then it follows that dimRN2 = Max{dimRN1, dimRN3}. �

Lemma 2.2. Let N be an R-module. Then

AssRΓI(N) = AssRHomR(R/I,N) = AssRN ∩ V (I).

Proof. It follows from [1] that AssRHomR(R/I,N) = AssRN ∩ V (I). Now we
will prove that

AssRΓI(N) = AssRN ∩ V (I).

Let p ∈ AssRΓI(N). Then ΓIRp
(Np) 6= 0, and then p ∈ V (I). It is clear

that p ∈ AssRN . So AssRΓI(N) ⊆ AssRN ∩ V (I). On the other hand, let
p ∈ AssRN ∩ V (I). Then there exists x ∈ N such that p = (0 :R x). As I ⊆ p

we have Ix = 0, thus x ∈ ΓI(N). It follows that p ∈ AssRΓI(N). Hence,
AssRΓI(N) = AssRN ∩ V (I). This completes the proof. �

The following lemma is a well-known result. We can’t find a reference for
it. For the convenience of the reader, we give a proof of it.

Lemma 2.3. Let K,L be two R-modules. If K ⊆ L is an essential extension,

then AssRK = AssRL.

Proof. It is clear that AssRK ⊆ AssRL. On the other hand, let p ∈ AssRL.
Then, there exists x ∈ L, p = AnnRx. Since K ⊆ L is an essential extension,
there exists r ∈ R, rx ∈ K and rx 6= 0. Thus, r 6∈ p. By virtue of this, it is
easy to verify that AnnR(rx) ⊆ p. This show that AnnR(rx) = AnnRx = p,
and p ∈ AssRK. Hence, AssRK = AssRL. �
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Let k ≥ 0 be an integer. Let x1, x2, . . . , xr be a sequence of elements of R.
We say that x1, x2, . . . , xr is M -sequences in dimension > k if xi 6∈ p for all
p ∈ (AssRM/(x1, x2, . . . , xi−1)M)>k and all i = 1, 2, . . . , r (see [3, Definition
2.1]). It is easy to see that if x1, x2, . . . , xr is M -sequences in dimension > k,
then so is xn1

1 , xn2

2 , . . . , xnr

r for all positive integers n1, n2, . . . , nr. For the notion
of M -sequences in dimension > k, Brodmann and Nhan gave the following
characterization:

Remark 2.4 ([3, Lemma 2.4]). Let t > 0 be an integer. Then,
(i) dimRH

i
I(M) ≤ k for ∀i < t if and only if there exists an M -sequence in

dimension > k of length t in I.
(ii) If dimM/IM > k. Then each M -sequence in dimension > k in I may

be extended to a maximal M -sequence in dimension > k in I. Moreover, all
maximalM -sequences in dimension> k in I have the same length, this common
length is equal to the least integer i such that dimRH

i
I(M) > k. We usually

denote this length by depthk(I,M).
(iii) If dimM/IM ≤ k. Then there exists an M -sequence in dimension > k

in I of length n for any integer n > 0.

The two lemmas below establish the relationships among a M -sequence in
dimension > k, a filter regular sequence on the localization of M and a regular
sequence on the localization of M .

Lemma 2.5. Let M be a finitely generated R-module. Let x1, x2, . . . , xr be M -

sequences in dimension > k. Then, for p ∈ SpecR satisfying x1, x2, . . . , xr ⊆ p

and dimR/p ≥ k, x1/1, x2/1, . . . , xr/1 ∈ pRp is a filter regular sequence on

Mp.

Proof. Let p ∈ SpecR satisfying x1, x2, . . . , xr ⊆ p and dimR/p ≥ k. Let qRp ∈
SpecRp \ {pRp}. Then dimR/q > k. Then x1/1, x2/1, . . . , xr/1 is a poor Mq-
regular sequence. Note that Mq

∼= (Mp)qRp . So x1/1, x2/1, . . . , xr/1 ∈ pRp is

a filter regular sequence on Mp. �

For an R-module K and an ideal I, we use 0 :K 〈I〉 to denote the submodule
{x ∈ K | Inx = 0 for some n > 0}.

Lemma 2.6. Let M be a finitely generated R-module. Let x1, x2, . . . , xr be

M -sequences in dimension > k. For p ∈ SpecR satisfying x1, x2, . . . , xr ⊆ p

and dimR/p ≥ k, if p 6∈ AssRM/(x1, x2, . . . , xi−1)M for every i, 1 ≤ i ≤ r,
then x1/1, x2/1, . . . , xr/1 ∈ pRp is a poor Mp-regular sequence.

Proof. By Lemma 2.5, For p ∈ SpecR satisfying x1, x2, . . . , xr ⊆ p and dimR/p
≥ k, x1/1, x2/1, . . . , xr/1 ∈ pRp is a filter regular sequence on Mp. Then by
the definition of the filter regular sequence, we have that

0 :Mp/(x1,x2,...,xi−1)Mp
xi ⊆ 0 :Mp/(x1,x2,...,xi−1)Mp

〈pRp〉
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for all i = 1, . . . , r. Since pRp 6∈ AssRpMp/(x1, x2, . . . , xi−1)Mp for every i, 1 ≤

i ≤ r, 0 :Mp/(x1,x2,...,xi−1)Mp
〈pRp〉 = 0 for all i = 1, . . . , r. So x1/1, x2/1, . . .,

xt/1 ∈ pRp is a poor Mp-regular sequence. �

3. Main results

Proposition 3.1. Let M be a finitely generated R-module and E•(M) a min-

imal injective resolution of M . Let k, t be two integers. The following are

equivalent:
(i) dimRH

i
I(M) ≤ k for ∀i < t;

(ii) dimRExt
i
R(R/I,M) ≤ k for ∀i < t;

(iii) dimRΓI(E
i(M)) ≤ k for ∀i < t;

(iv) dimRHomR(R/I,Ei(M)) ≤ k for ∀i < t.

Proof. (i)⇐⇒(iii): We denote Hi
I(•) by T i(•), i ≥ 0. and denote ΓI(•) by

T (•)(= T 0(•)).
We have the following commutative graph:

. . .
T (dr−1)
−−−−−→ T (Er(M))

T (dr)
−−−−→ T (Er+1(M))

T (dr+1)
−−−−−→ . . .





y





y

. . .
dr−1

−−−−→ Er(M)
dr

−−−−→ Er+1(M)
dr+1

−−−−→ . . .

Since Kerdr ⊆ Er(M) is an essential extension, then KerT (dr) = Kerdr ∩
T (Er(M)) ⊆ T (Er(M)) is an essential extension. By Lemma 2.3,

AssRKerT (dr) = AssRT (E
r(M)).

Then

SuppRKerT (dr) = SuppRT (E
r(M)).

and so that

(a) dimRKerT (dr) ≤ k if and only if dimRT (E
r(M)) ≤ k

for some integer k. On the other hand, it follows by Lemma 2.1 that

(b) dimRImT (dr) ≤ k if dimRT (E
r(M)) ≤ k.

By using the following exact sequence

0 −→ ImT (dr−1) −→ KerT (dr) −→ T r(M) −→ 0

for r = 1, 2, . . . , t − 1 and KerT (d0) ∼= T 0(M), it follows from the results (a)
and (b) that

dimRT
i(M) ≤ k for ∀i < t if and only if dimRT (E

i(M)) ≤ k for ∀i < t.
This completes the proof of (i) ⇐⇒ (iii).
(ii)⇐⇒(iv): By the same argument as above (we only replace Hi

I(•), ΓI(•)
by ExtiR(R/I, •), HomR(R/I, •) respectively), it follows that (ii) ⇐⇒ (iv).
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(iii) ⇐⇒ (iv): By Lemma 2.2, AssRΓI(E
i(M)) = AssRHomR(R/I,Ei(M)),

then
SuppRΓI(E

i(M)) = SuppRHomR(R/I,Ei(M)),

and so we have that (iii) and (iv) are equivalent.
This completes the proof. �

Lemma 3.2. Let M be a finitely generated R-module and E•(M) a minimal

injective resolution of M . For an integer t > 0, if dimRH
i
I(M) ≤ k for ∀i < t.

Then there are some equalities:

(i)
⋃j

i=0(SuppRH
i
I(M))>k =

⋃j
i=0(SuppRExt

i
R(R/I,M))>k = ∅ for ∀j < t.

(ii)
j
⋃

i=0

(AssRH
i
I(M))k =

j
⋃

i=0

(AssRΓI(E
i(M)))k

=

j
⋃

i=0

(AssRHom(R/I,Ei(M)))k

=

j
⋃

i=0

(AssRExt
i
R(R/I,M))k

for ∀j ≤ t.
(iii)

(AssRH
t
I(M))>k = (AssRΓI(E

t(M)))>k

= (AssRHom(R/I,Et(M)))>k

= (AssRExt
t
R(R/I,M))>k.

Proof. (i) Since dimRH
i
I(M) ≤ k for ∀i < t, it follows by Proposition 3.1 that

j
⋃

i=0

(SuppRH
i
I(M))>k =

j
⋃

i=0

(SuppRExt
i
R(R/I, (M)))>k = ∅

for ∀j < t.
(ii) We denote Hi

I(•) by T i(•), i ≥ 0. And we denote ΓI(•) by T (•)(=
T 0(•)).

As the proof of Proposition 3.1, we have the following commutative graph:

. . .
T (dr−1)
−−−−−→ T (Er(M))

T (dr)
−−−−→ T (Er+1(M))

T (dr+1)
−−−−−→ . . .





y





y

. . .
dr−1

−−−−→ Er(M)
dr

−−−−→ Er+1(M)
dr+1

−−−−→ . . .

Since Kerdi ⊆ Ei(M) is an essential extension, then KerT (di) = Kerdi ∩
T (Ei(M)) ⊆ T (Ei(M)) is an essential extension. Then, by Lemma 2.3, for
∀i ≥ 0,

(1) AssRKerT (di) = AssRT (E
i(M)).
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Let j ≤ t be an integer. In the following, we use induction on j to prove
that

j
⋃

i=0

(AssRT (E
i(M)))k =

j
⋃

i=0

(AssRT
i(M))k.

Let j = 0. Since KerT (d0) ∼= T 0(M), it follows from the equality (1) that

(AssRT (E
0(M)))k = (AssRT

0(M))k.

Then we suppose that j > 1 and that the result have been proved for j − 1:

j−1
⋃

i=0

(AssRT (E
i(M)))k =

j−1
⋃

i=0

(AssRT
i(M))k.

For every i ∈ {1, 2, . . . , j}, from the exact sequence

0 −→ ImT (di−1) −→ KerT (di) −→ T i(M) −→ 0,

it follows that

(AssRT (E
i(M)))k = (AssRKerT (di))k

⊆ (AssRImT (di−1))k
⋃

(AssRT
i(M))k

= (SuppRImT (di−1))k
⋃

(AssRT
i(M))k

⊆ (SuppRT (E
i−1(M)))k

⋃

(AssRT
i(M))k

= (AssRT (E
i−1(M)))k

⋃

(AssRT
i(M))k.

Then we have that
j
⋃

i=0

(AssRT (E
i(M)))k ⊆

j
⋃

i=0

(AssRT
i(M))k.

On the other hand, let p ∈
⋃j

i=0(AssRT
i(M))k. If p ∈

⋃j−1
i=0 (AssRT

i(M))k,

by the inductive assumption, it is clear that p ∈
⋃j

i=0(AssRT (E
i(M)))k. So

we assume that p 6∈
⋃j−1

i=0 (AssRT
i(M))k. Then, by the inductive assumption

again,

p 6∈

j−1
⋃

i=0

(AssRT (E
i(M)))k =

j−1
⋃

i=0

(SuppRT (E
i(M)))k

and p 6∈ SuppRImT (dj−1). The exact sequence

0 −→ ImT (dj−1) −→ KerT (dj) −→ T j(M) −→ 0

implies that

(KerT (dj))p ∼= (T j(M))p.

Then, since p ∈ (AssRT
j(M))k, it follows that

pRp ∈ AssRpT
j(M)p = AssRpKerT (dj)p,
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and so by the equality (1), p ∈ (AssRKerT (dj))k = (AssRT (E
j(M))k. Hence,

p ∈
⋃j

i=0(AssRT (E
i(M)))k, and

j
⋃

i=0

(AssRT
i(M))k ⊆

j
⋃

i=0

(AssRT (E
i(M)))k.

This shows the equality in the previous formula.
Thus, we have that

j
⋃

i=0

(AssRH
i
I(M))k =

j
⋃

i=0

(AssRΓI(E
i(M)))k

for ∀j ≤ t.
By the same argument as above (we only replace Hi

I(•), ΓI(•) by ExtiR(R/I,
•), HomR(R/I, •), respectively), we have that

j
⋃

i=0

(AssRExt
i
R(R/I,M))k =

j
⋃

i=0

(AssRHom(R/I,Ei(M)))k

for ∀j ≤ t.
Finally, the result (ii) follows from Lemma 2.2.
(iii) We continue to use the notations as (ii). Since dimRH

i
I(M) ≤ k for

∀i < t, it follows that dimRImT (dt−1) ≤ k by ((i) ⇐⇒ (iii)) of Proposition 3.1.
From the exact sequences

0 −→ ImT (dt−1) −→ KerT (dt) −→ T t(M) −→ 0,

it follows that for ∀p ∈ SpecR satisfying dimR/p > k, we have that

(KerT (dt))p ∼= (T t(M))p.

Then, p ∈ AssRKerT (dt))>k if and only if p ∈ (AssRT
t(M))>k. Hence, by the

equality (1)

(AssRT
t(M))>k = AssRKerT (dt))>k = (AssRT (E

t(M)))>k.

This shows that

(AssRH
t
I(M))>k = (AssRΓI(E

t(M)))>k.

By the same argument as above, it follows that

(AssRHom(R/I,Et(M))>k = (AssRExt
t
R(R/I,M))>k.

Then by Lemma 2.2, the result (iii) follows. �

Note that Hi
I(M) ∼= Hi

In(M) for any positive integer n. The following
corollaries are two immediate consequences of Theorem 3.2.
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Corollary 3.3. Let M be a finitely generated R-module. For an integer t > 0,
dimRH

i
I(M) ≤ k for ∀i < t. Then

j
⋃

i=0

(AssRH
i
I(M))≥k =

j
⋃

i=0

(AssRExt
i
R(R/In,M))≥k

for ∀ j ≤ t and ∀n > 0. In particular, (AssRH
i
I(M))≥k is a finite set for

∀i ≤ t.

Corollary 3.4 ([6, Theorem 1.1]). Let M be a finitely generated R-module.

For an integer t > 0, dimRH
i
I(M) ≤ k for ∀i < t. Then

(i)
⋃

n>0(AssRExt
i
R(R/In,M))≥k ⊆

⋃t
i=0 AssRExt

i
R(R/I,M) for ∀i ≤ t.

In particular,
⋃

n>0(AssRExt
i
R(R/In,M))≥k is a finite set for ∀i ≤ t.

(ii)
⋃

n>0(SuppRExt
i
R(R/In,M))≥k =

⋃

n>0(AssRExt
i
R(R/In,M))≥k for

∀i < t. In particular,
⋃

n>0(SuppRExt
i
R(R/In,M))≥k is a finite set for ∀i < t.

Theorem 3.5. Let M be a finitely generated R-module. Let x1, x2, . . . , xr be

M -sequences in dimension > k. Then, for any positive integers n1, n2, . . . , nr,

(i) (AssRM/(xn1

1 , xn2

2 , . . . , xni

i )M)>k ∩ V (xi+1) = ∅, ∀i < r;
(ii) (AssRM/(xn1

1 , xn2

2 , . . . , xnr

r )M)>k = (AssRM/(x1, x2, . . . , xr)M)>k;
(iii)

⋃r
i=1(AssRM/(xn1

1 , xn2

2 , . . . , xni

i )M)k =
⋃r

i=1(AssRM/(x1, x2, . . . , xi)M)k.

In particular,
⋃

n1,n2,...,nr

(AssRM/(xn1

1 , xn2

2 , . . . , xnr

r )M)≥k

is a finite set.

Proof. (i) Let ∀i < r. For p ∈ AssRM/(xn1

1 , xn2

2 , . . . , xni

i )M ∩ V (xi+1), then,
by the definition of M -sequences in dimension > k, dimR/p ≤ k. So

(AssRM/(xn1

1 , xn2

2 , . . . , xni

i )M)>k ∩ V (xi+1) = ∅.

(ii) Let n1, n2, . . . , nr be any positive integers and

p ∈ (AssRM/(xn1

1 , xn2

2 , . . . , xnr

r )M)>k.

Then xn1

1 /1, xn2

2 /1, . . . , xnr

r /1 ∈ pRp is a poor Mp-regular sequence. By [4,
Lemma 1.2.4],

Hom(Rp/(x1, x2, . . . , xr)Rp,Mp/(x
n1

1 , xn2

2 , . . . , xnr

r )Mp)

∼= ExtrRp
(Rp/(x1, x2, . . . , xr)Rp,Mp).

So we have that

pRp ∈ (AssRp
Mp/(x

n1

1 , xn2

2 , . . . , xnr

r )Mp)>k

if and only if

pRp ∈ (AssRp
ExtrRp

(Rp/(x1, x2, . . . , xr)Rp,Mp))>k.

This shows that

pRp ∈ (AssRp
Mp/(x

n1

1 , xn2

2 , . . . , xnr

r )Mp)>k
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if and only if

pRp ∈ (AssRp
Mp/(x1, x2, . . . , xr)Mp)>k.

Hence,

p ∈ (AssRM/(xn1

1 , xn2

2 , . . . , xnr

r )M)>k

if and only if

p ∈ (AssRM/(x1, x2, . . . , xr)M)>k.

(iii) Since x1, x2, . . . , xr is M -sequences in dimension > k, then, for all
positive integers n1, n2, . . . , nr, so is xn1

1 , xn2

2 , . . . , xnr

r . The result follows by
the more general statement of Theorem 3.6 (proved in the following) for I =
(x1, x2, . . . , xr). �

The following theorem is a generalization of [3, Theorem 1.2].

Theorem 3.6. Let M be a finitely generated R-module. Let x1, x2, . . . , xr ∈ I
be M -sequences in dimension > k. Then

(

r
⋃

i=0

AssRExt
i
R(R/I,M))≥k = (

r
⋃

i=0

(AssRM/(x1, x2, . . . , xi)M)≥k ∩ V (I).

In particular,

(
⋃

n

AssRExt
r
R(R/In,M))≥k

is contained in the finite set

(AssRM/(x1, x2, . . . , xr)M)>k ∪ (

r
⋃

i=0

AssRM/(x1, x2, . . . , xi)M)k.

Proof. We use induction on t to prove that

(

t
⋃

i=0

AssRExt
i
R(R/I,M))≥k = (

t
⋃

i=0

(AssRM/(x1, x2, . . . , xi)M)≥k ∩ V (I)

for every t, 0 ≤ t ≤ r. When t = 0, then it is nothing to prove since it is well
know that AssRHom(R/I,M) = AssRM ∩ V (I). Then we suppose that t > 1
and that the result have been proved for t− 1:

(
t−1
⋃

i=0

AssRExt
i
R(R/I,M))≥k = (

t−1
⋃

i=0

(AssRM/(x1, x2, . . . , xi)M)≥k ∩ V (I).

Let p ∈ (
⋃t

i=0(AssRM/(x1, x2, . . . , xi)M)≥k ∩ V (I).

If p ∈
⋃t−1

i=0 AssRM/(x1, x2, . . . , xi)M , then by the inductive assumption, we
have that

p ∈ (

t
⋃

i=0

AssRExt
i
R(R/I,M))≥k.
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If p 6∈
⋃t−1

i=0 AssRM/(x1, x2, . . . , xi)M . Then p ∈ AssRM/(x1, x2, . . . , xt)M ,
moreover by Lemma 2.6, x1/1, x2/1, . . . , xt/1 ∈ IRp is a poor Mp-regular se-
quence. Then there is an isomorphism:

Hom(Rp/IRp,Mp/(x1, x2, . . . , xt)Mp) ∼= ExttRp
(Rp/IRp,Mp).

Since p ∈ AssRM/(x1, x2, . . . , xt)M , it follows that

pRp ∈ AssRp
Mp/(x1, x2, . . . , xt)Mp ∩ V (IRp) = AssRpExt

t
Rp

(Rp/IRp,Mp).

This shows that p ∈ AssRExt
t
R(R/I,M). Therefore, we have that

(

t
⋃

i=0

(AssRM/(x1, x2, . . . , xi)M)≥k ∩ V (I) ⊆ (

t
⋃

i=0

AssRExt
i
R(R/I,M))≥k.

On the other hand, let p ∈ (
⋃t

i=0 AssRExt
i
R(R/I,M))≥k.

If p ∈
⋃t−1

i=0 AssRExt
i
R(R/I,M), it is clear that

p ∈ (

t
⋃

i=0

(AssRM/(x1, x2, . . . , xi)M)≥k ∩ V (I)

by the inductive assumption.
If p 6∈

⋃t−1
i=0 AssRExt

i
R(R/I,M), by the inductive assumption, we have that

p 6∈
⋃t−1

i=0 AssRM/(x1, x2, . . . , xi)M . This shows that x1/1, x2/1, . . . , xt/1 ∈
IRp is a poor Mp-regular sequence by Lemma 2.6. Then, similar to the proof
above, we can also prove that

p ∈ (
t
⋃

i=0

(AssRM/(x1, x2, . . . , xi)M)≥k ∩ V (I).

Therefore,

(

t
⋃

i=0

AssRExt
i
R(R/I,M))≥k ⊆ (

t
⋃

i=0

(AssRM/(x1, x2, . . . , xi)M)≥k ∩ V (I).

This proves the equality in the previous formula.

By Theorem 3.5(i), (
⋃r−1

i=0 AssRM/(x1, x2, . . . , xi)M)>k ∩ V (I) = ∅. So we
have that

(
⋃

n

AssRExt
r
R(R/In,M))≥k

is contained in the finite set

(AssRM/(x1, x2, . . . , xr)M)>k ∪ (

r
⋃

i=0

AssRM/(x1, x2, . . . , xi)M)k.
�
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