References
- S. Akbari, R. Nikandish, and M. J. Nikmehr, Some results on the intersection graphs of ideals of rings, J. Algebra Appl. 12 (2013), no. 4, 1250200, 13 pp. https://doi.org/10.1142/S0219498812502003
- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
- I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1997.
- J. Chen, N. Ding, and M. F. Yousif, On Noetherian rings with essential socle, J. Aust. Math. Soc. 76 (2004), no. 1, 39-49. https://doi.org/10.1017/S1446788700008685
- S. Ebrahimi Atani, S. Dolati Pish Hesari, and M. Khoramdel, Total graph of a commu- tative semiring with respect to identity-summand elements, J. Korean Math. Soc. 51 (2014), no. 3, 593-607. https://doi.org/10.4134/JKMS.2014.51.3.593
- F. Heydari and M. J. Nikmehr, The unit graph of a left Artinian ring, Acta Math. Hungar. 139 (2013), no. 1-2, 134-146. https://doi.org/10.1007/s10474-012-0250-3
- J. A. Huckaba, Commutative Rings with Zero-Divisors, Marcel Dekker, Inc., New York, 1988.
- T. Y. Lam, A First Course in Non-commutative Rings, Graduate Texts in Mathematics, Vol. 131, Springer-Verlag, Berlin/Heidelberg, New York, 1991.
-
R. Nikandish and M. J. Nikmehr, The intersection graph of ideals of
$Z_{n}$ is weakly perfect, Util. Math., to appear. - R. Y. Sharp, Steps in Commutative Algebra, Second Edition, London Mathematical Society Student Texts 51, Cambridge University Press, Cambridge, 2000.
- D. B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, Upper Saddle River, 2001.
- R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991.
Cited by
- On the essential graph of a commutative ring vol.16, pp.07, 2017, https://doi.org/10.1142/S0219498817501328
- Some results on the strongly annihilating-ideal graph of a commutative ring 2018, https://doi.org/10.1007/s40590-017-0179-1
- On the strongly annihilating-ideal graph of a commutative ring vol.09, pp.02, 2017, https://doi.org/10.1142/S1793830917500288