Commun. Korean Math. Soc. **38** (2023), No. 3, pp. 733–740 https://doi.org/10.4134/CKMS.c220273 pISSN: 1225-1763 / eISSN: 2234-3024

THE DIMENSION GRAPH FOR MODULES OVER COMMUTATIVE RINGS

Shiroyeh Payrovi

ABSTRACT. Let R be a commutative ring and M be an R-module. The dimension graph of M, denoted by DG(M), is a simple undirected graph whose vertex set is $Z(M) \setminus \text{Ann}(M)$ and two distinct vertices x and y are adjacent if and only if $\dim M/(x, y)M = \min\{\dim M/xM, \dim M/yM\}$. It is shown that DG(M) is a disconnected graph if and only if

(i) $\operatorname{Ass}(M) = \{\mathfrak{p}, \mathfrak{q}\}, Z(M) = \mathfrak{p} \cup \mathfrak{q} \text{ and } \operatorname{Ann}(M) = \mathfrak{p} \cap \mathfrak{q}.$

(ii) $\dim M = \dim R/\mathfrak{p} = \dim R/\mathfrak{q}$.

(iii) $\dim M/xM = \dim M$ for all $x \in Z(M) \setminus \operatorname{Ann}(M)$.

Furthermore, it is shown that $\operatorname{diam}(DG(M)) \leq 2$ and $\operatorname{gr}(DG(M)) = 3$, whenever M is Noetherian with $|Z(M) \setminus \operatorname{Ann}(M)| \geq 3$ and DG(M) is a connected graph.

1. Introduction

The zero-divisor graph of a commutative ring was introduced and studied by I. Beak in [4]. Furthers, D. F. Anderson and P. S. Livingston in [2] studied the concept of zero-divisor graph on nonzero zero-divisors of a ring. Let R be a commutative ring and let Z(R) denote its set of zero divisors. The zero-divisor graph of R is a graph with vertex set $Z^*(R) = Z(R) \setminus \{0\}$ and two distinct vertices x and y are adjacent if and only if xy = 0. The concept of zero-divisor graph has been studied by many authors, see for examples [1,3] and variations of zero-divisor graph are created by changing the vertex set, the edge condition, or both. The concept of the zero-divisor graph for rings has been generalized for modules in many papers, see for examples [5,6,8]. Let R be a commutative ring and let M be an R-module. In this paper, we associate a simple graph to the module M, denoted by DG(M), with vertex set $Z(M) \setminus Ann(M)$ and two distinct vertices x, y are adjacent if and only if

 $\dim M/(x,y)M = \min\{\dim M/xM, \dim M/yM\}.$

O2023Korean Mathematical Society

Received September 10, 2022; Accepted February 7, 2023.

²⁰²⁰ Mathematics Subject Classification. Primary 13Cxx; Secondary 05C25.

Key words and phrases. Krull dimension, dimension graph.

Note that, in general, $\dim M/(x, y)M \leq \min\{\dim M/xM, \dim M/yM\}$. Here, dim M denotes the Krull dimension of M. In Section 2, for a Noetherian Rmodule M we investigate the connectedness, diameter and girth of DG(M). More precisely, it is shown that $\operatorname{diam}(DG(M)) \leq 2$ and $\operatorname{gr}(DG(M)) \in \{3, \infty\}$. In Section 3, we study the relationship between the dimension graph and zerodivisor graph of M.

Before we state some results, let us introduce some graphical notations. Let G = (V(G), E(G)) be a simple graph, V(G) and E(G) are called vertex set and edge set of G, respectively. Let $x, y \in V(G)$. We write x - y, whenever x and y are adjacent. The vertex x is called universal when it is adjacent to every other vertices. We say that G is connected if there is a path between any two distinct vertices. For vertices x and y of G, we define d(x, y) to be the length of a shortest path between x and y. If there is no path, then $d(x, y) = \infty$. The diameter of G is diam $(G) = \sup\{d(x, y) : x \text{ and } y \text{ are vertices of } G\}$. The graph G is complete if any two distinct vertices are adjacent and a complete graph with n vertices is denoted by K_n . The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G(\operatorname{gr}(G) = \infty$ if G contains no cycle).

Throughout this paper, R denotes a commutative ring with nonzero identity and M denotes a unitary R-module, $\operatorname{Ann}(M) = \{r \in R : rM = 0\}, Z(M) =$ $\{r \in R : rm = 0 \text{ for some nonzero } m \in M\}$ denote the annihilator and the set of zero-divisors, respectively. Moreover, $\operatorname{Ass}(M) = \{\mathfrak{p} \in \operatorname{Spec}(R) : \mathfrak{p} =$ $\operatorname{Ann}(m)$ for some nonzero $m \in M\}$ denotes the set of associated prime ideals of M and $\operatorname{Assh}(M) = \{\mathfrak{p} \in \operatorname{Ass}(M) : \dim M = \dim R/\mathfrak{p}\}$. For notations and terminologies not given in this paper, the reader is referred to [9].

2. Basic properties of dimension graph for modules

Let R be a commutative ring and M be an R-module. The Krull dimension of M, denoted by dim M, is defined to be the supremum of lengths of chains of prime ideals of R which lay in Supp(M) if this supremum exists, and ∞ otherwise.

Definition. Let M be an R-module. The dimension graph of M, denoted by DG(M), is a simple undirected graph associated to M with the vertex set $Z(M) \setminus \text{Ann}(M)$ and a pair of distinct vertices x and y are adjacent if and only if

 $\dim M/(x,y)M = \min\{\dim M/xM, \dim M/yM\}.$

Lemma 2.1. Let M be an R-module and let $x \in Z(M) \setminus Ann(M)$. Then the following statements are true:

- (i) If xM = M, then x is a universal vertex of DG(M).
- (ii) If M is Noetherian and $x \in r(Ann(M))$, then x is a universal vertex of DG(M). In particular, if |Ass(M)| = 1, then DG(M) is a complete graph.

(iii) If $xM \subseteq yM$ for some $y \in Z(R) \setminus Ann(M)$, then x, y are adjacent in DG(M). In particular, if $xy \neq 0$ and $x \neq xy$, then x, xy are adjacent in DG(M).

Proof. (i) Since M = xM = (x, y)M for any $y \in Z(M) \setminus Ann(M)$, x and y are adjacent. Note that, if M is Noetherian, then $xM \neq M$.

(ii) Let $x \in r(\operatorname{Ann}(M))$. Then $x \in \bigcap_{\operatorname{Ann}(M)\subseteq \mathfrak{p}} \mathfrak{p}$ so $\dim M/xM = \dim M$. Assume that $y \in Z(M) \setminus \operatorname{Ann}(M)$ and $x \neq y$. It is obvious that $\dim M/(x, y)M \leq \min\{\dim M/xM, \dim M/yM\}$. Furthermore, for all $\mathfrak{p} \in \operatorname{Supp}(M)$ with $y \in \mathfrak{p}$ we have $x \in \mathfrak{p}$. Thus $\dim M/(x, y)M = \dim M/yM$ so x and y are adjacent.

(iii) Suppose that $y \in Z(R) \setminus \text{Ann}(M)$ and $xM \subseteq yM$. Since (x, y)M = yM, we have dim $M/(x, y)M = \dim M/yM$ so x and y are adjacent in DG(M). The second part now is obvious.

Corollary 2.2. If M is a Noetherian R-module and Z(M) = r(Ann(M)), then DG(M) is a complete graph.

Proof. It is an immediate consequence of Lemma 2.1(ii).

The second part of the following example shows that the converse of Corollary 2.2 is not true, necessarily.

Example 1. (i) Let p be a prime number and consider $M = \mathbb{Z}_{p^{\infty}}$ as a \mathbb{Z} -module. Then $p\mathbb{Z} = Z(M) \neq r(\operatorname{Ann}(M)) = 0$. By Lemma 2.1(i), DG(M) is a complete graph so p is a universal vertex but $p \notin r(\operatorname{Ann}(M))$.

(ii) Let k be a field and consider the residue ring R of the ring $k[X_1, X_2]$ of polynomials over k in indeterminates X_1, X_2 given by $R = k[X_1, X_2]/(X_1) \cap (X_1^2, X_2)$. For each i = 1, 2, let x_i denotes the natural image of X_i in R. Then it is easy to see that DG(R) is a complete graph but $(x_1, x_2) = Z(R) \neq \text{Nil}(R) = (x_1)$.

(iii) Let k be a field and consider the residue ring R of the ring $k[X_1, X_2, X_3]$ of polynomials over k in indeterminates X_1, X_2, X_3 given by $R = k[X_1, X_2, X_3]/(X_1) \cap (X_1^2, X_2, X_3)$. For each i = 1, 2, 3, let x_i denote the natural image of X_i in R. Then DG(R) is not a complete graph since dim $R/(x_1 + x_2)R = 1$, dim $R/x_3R = 1$ and dim $R/(x_1 + x_2, x_3)R = 0$ moreover $(x_1, x_2, x_3) = Z(R) \neq Nil(R) = (x_1)$.

Theorem 2.3. Let M be a Noetherian R-module. Then DG(M) is disconnected if and only if the following conditions are true:

(i) $r(\operatorname{Ann}(M)) = \operatorname{Ann}(M) = \mathfrak{p} \cap \mathfrak{q}, \ Z(M) = \mathfrak{p} \cup \mathfrak{q} \ and \operatorname{Ass}(M) = \{\mathfrak{p}, \mathfrak{q}\}.$

- (ii) $\dim M = \dim R/\mathfrak{p} = \dim R/\mathfrak{q}$.
- (iii) $\dim M/xM = \dim M$, for all $x \in Z(M) \setminus \operatorname{Ann}(M)$.

Proof. (i) Let DG(M) be a disconnected graph. Then in view of Lemma 2.1(ii), $r(\operatorname{Ann}(M)) = \operatorname{Ann}(M)$ and there are $x, y \in Z(M) \setminus \operatorname{Ann}(M)$ such that there is no path between them. If $xyM \neq 0$, then by the hypotheses $x \neq xy, y \neq xy$ and x - xy - y is a path in DG(M) that is a contradiction. Thus we may

SH. PAYROVI

assume that xyM = 0. If there exists $z \in Z(M) \setminus (\operatorname{Ann}(xM) \cup \operatorname{Ann}(yM))$, then x - xz - z - yz - y is a path in DG(M) which is a contradiction. Hence, $Z(M) = \operatorname{Ann}(xM) \cup \operatorname{Ann}(yM)$. Since $r(\operatorname{Ann}(M)) = \operatorname{Ann}(M)$, therefore $\operatorname{Ann}(xM) \not\subseteq$ Ann(yM) and $\operatorname{Ann}(yM) \not\subseteq$ Ann(xM). Hence, $\mathfrak{p} = \operatorname{Ann}(xM)$, $\mathfrak{q} = \operatorname{Ann}(yM)$ are associated prime ideals of M and $y \in \mathfrak{p} \setminus \mathfrak{q}$, $x \in \mathfrak{q} \setminus \mathfrak{p}$, see [9, Lemma 9.36]. Assume that $\mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_t = \mathfrak{p}$ and $\mathfrak{q}_0 \subset \mathfrak{q}_1 \subset \cdots \subset \mathfrak{q}_k = \mathfrak{q}$ are chains of prime ideals of R, where \mathfrak{p}_i and \mathfrak{q}_j belong to Ass(M) for all $i = 0, 1, \ldots, t$ and $j = 0, 1, \ldots, k$. Thus from xyM = 0 it follows that $y \in \mathfrak{p}_i$ and $x \in \mathfrak{q}_j$ for all $i = 0, 1, \ldots, t$ and $j = 0, 1, \ldots, k$. Suppose that $z \in \mathfrak{p} \cap \mathfrak{q} \setminus \operatorname{Ann}(M)$. If $z \in \mathfrak{p}_i \setminus \mathfrak{p}_{i-1}$ and $z \in \mathfrak{q}_j \setminus \mathfrak{q}_{j-1}$ for some $0 \leq i \leq t$ and $0 \leq j \leq k$, then y - z and z - x are two edges of DG(M) so y - z - x is a path which is a contradiction. Hence, $\mathfrak{p} \cap \mathfrak{q} = \operatorname{Ann}(M)$.

(ii) Note that by the previous paragraph it follows that $\dim M/xM = \dim R/\mathfrak{q}$ and $\dim M/yM = \dim R/\mathfrak{p}$. Now, we show that $\dim M/xM = \dim M/yM$. Assume that $k = \dim M/xM < t = \dim M/yM$ and look for a contradiction. Suppose that $\operatorname{Ann}(M) + Rx \subseteq \mathfrak{q} = \mathfrak{q}_0 \subset \mathfrak{q}_1 \subset \cdots \subset \mathfrak{q}_k$ and $\operatorname{Ann}(M) + Ry \subseteq \mathfrak{p} = \mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_t$ are chains of prime ideals of R. Let k = t - 1 and $z \in \mathfrak{p}_1 \cap \mathfrak{q} \setminus \mathfrak{p}$. Then $\dim M/(y, z)M = t - 1 = \dim M/zM$ so y - z is an edge of DG(M). On the other hand, each nonzero element of \mathfrak{q} is adjacent to x thus x - z is an edge of DG(M). Hence, x - z - y is a path and this is a contradiction. Therefore, $\dim M/xM = \dim M/yM = \dim M$ so $\operatorname{Assh}(M) = \{\mathfrak{p}' \in \operatorname{Ass}(M) : \dim M = \dim R/\mathfrak{p}'\} = \{\mathfrak{p}, \mathfrak{q}\}.$

In the following we show that, for all $z \in Z(M) \setminus \operatorname{Ann}(M)$, either $\operatorname{Ann}(zM) = \operatorname{Ann}(xM)$ or $\operatorname{Ann}(zM) = \operatorname{Ann}(yM)$. Without loss of generality, we may assume that $\operatorname{Ann}(zM) \subseteq \operatorname{Ann}(xM)$. So $xzM \neq 0$ and $z \in \operatorname{Ann}(yM)$. If there is $w \in \operatorname{Ann}(xM) \setminus \operatorname{Ann}(zM)$, then $wz \in \operatorname{Ann}(xM) \cap \operatorname{Ann}(yM)$ contrary to the assumption. Therefore, $\operatorname{Ann}(zM) = \operatorname{Ann}(xM) = \mathfrak{p}$ so $\dim M/zM = \dim R/\mathfrak{q}$.

Conversely, assume that M satisfies the conditions (i), (ii) and (iii). Thus $\dim M = \dim R/\mathfrak{p} = \dim R/\mathfrak{q}$ and therefore elements of $\mathfrak{p} \setminus \operatorname{Ann}(M)$ make a clique and elements of $\mathfrak{q} \setminus \operatorname{Ann}(M)$ make a clique too. Let $x \in \mathfrak{q} \setminus \mathfrak{p}$ and $y \in \mathfrak{p} \setminus \mathfrak{q}$. If $\dim M/(x, y)M = \dim M$, then either $y \in \mathfrak{p}$ or $x \in \mathfrak{q}$ which is a contradiction. Thus x, y are nonadjacent vertices of DG(M). Hence, $DG(M) = K_{|\mathfrak{p} \setminus \operatorname{Ann}(M)|} \cup K_{|\mathfrak{q} \setminus \operatorname{Ann}(M)|}$ and therefore DG(M) is disconnect. \Box

Example 2. (i) Let M be an Artinian R-module and let x, y be a pair of distinct vertices of DG(M) such that $xM \neq M$, $yM \neq M$. Then x and y are adjacent if and only if $(x, y)M \subset M$.

(ii) Let M be a Noetherian and Artinian R-module and let x, y be a pair of distinct vertices of DG(M). Then x and y are adjacent if and only if $(x, y)M \subset M$.

(iii) Let R be a finite ring and let x, y be a pair of distinct vertices of DG(R). Then x and y are adjacent if and only if $(x, y)R \subset R$. In particular, for a finite local ring R, DG(R) is a complete graph. (iv) Suppose that p, q are prime numbers and m, n are positive integers such that $m \geq 2$ or $n \geq 2$. By (iii) it is clear that $DG(\mathbb{Z}_{p^m}) = K_{p^{m-1}(p-1)}$ is a complete graph whereas $DG(\mathbb{Z}_{pq}) = K_{|\mathbb{Z}_{pq}^*|} \cup K_{|\mathbb{Z}_{pq}^*|}$ is a disconnected graph with two component of disconnectedness, see Theorem 2.3.

Theorem 2.4. If M is a Noetherian R-module and DG(M) is a connected graph, then diam $(DG(M)) \leq 2$.

Proof. If $r(\operatorname{Ann}(M)) \neq \operatorname{Ann}(M)$, then diam $(DG(M)) \leq 2$ since DG(M) has a universal vertex, see Lemma 2.1(ii). Thus we may assume that $r(\operatorname{Ann}(M)) = \operatorname{Ann}(M)$. Let $x, y \in Z(M) \setminus \operatorname{Ann}(M)$ be nonadjacent vertices of DG(M). If $xyM \neq 0$, then x - xy - y is a path in DG(M) so $d(x, y) \leq 2$. Now, suppose that xyM = 0. If $|\operatorname{Ass}(M)| = 1$ or $\operatorname{Ass}(M) = \{\mathfrak{p}, \mathfrak{q}\}$ and $\mathfrak{p} \subseteq \mathfrak{q}$, then $\operatorname{Ann}(M)$ is a prime ideal so either $x \in \operatorname{Ann}(M)$ or $y \in \operatorname{Ann}(M)$ that is a contradiction. Thus we may assume that $\operatorname{Ass}(M) = \{\mathfrak{p}, \mathfrak{q}\}$ and $\mathfrak{p} \subseteq \mathfrak{q}$, $\mathfrak{q} \not\subseteq \mathfrak{p}$. Hence, $x \in \mathfrak{p} \setminus \mathfrak{q}$ and $y \in \mathfrak{q} \setminus \mathfrak{p}$. Now, a similar argument to that of Theorem 2.3 shows that $d(x, y) \leq 2$. Suppose that $\operatorname{Ass}(M) = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ ($n \geq 3$) we have the following three cases:

Case 1. If $MinAss(M) = \{p_1\}$, then $Ann(M) = p_1$ so either $x \in p_1$ or $y \in p_1$ that is a contradiction.

Case 2. If MinAss $(M) = \{\mathfrak{p}_1, \mathfrak{p}_2\}$ and $n = \dim M = \dim R/\mathfrak{p}_1 = \dim R/\mathfrak{p}_2$, then Ann $(M) = \mathfrak{p}_1 \cap \mathfrak{p}_2$ and we can assume that $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_2$ and $y \in \mathfrak{p}_2 \setminus \mathfrak{p}_1$. Assume that $\mathfrak{p}_3, \mathfrak{p}_4 \in \operatorname{Ass}(M)$ are such that $\mathfrak{p}_1 \subset \mathfrak{p}_3, \mathfrak{p}_2 \subset \mathfrak{p}_4$ and $\dim R/\mathfrak{p}_3 = \dim R/\mathfrak{p}_4 = n-1$. Then x-z-y is a path in DG(M) for each $z \in \mathfrak{p}_3 \cap \mathfrak{p}_4 \setminus \mathfrak{p}_1 \cup \mathfrak{p}_2$. If $n = \dim M = \dim R/\mathfrak{p}_1 > \dim R/\mathfrak{p}_2 = t$, then we may assume that $\mathfrak{p}_1 \subset \mathfrak{p}_3$ and $\dim R/\mathfrak{p}_3 = n-1$. Now, x-z-y is a path in DG(M) for each $z \in \mathfrak{p}_3 \cap \mathfrak{p}_2 \setminus \mathfrak{p}_1$. **Case 3.** If MinAss $(M) = \{\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3\}$, then Ann $(M) \neq \mathfrak{p}_1 \cap \mathfrak{p}_2$ and x-z-yis a path in DG(M) for each $z \in \mathfrak{p}_1 \cap \mathfrak{p}_2 \setminus \operatorname{Ann}(M)$.

Lemma 2.5. Let M be a nonzero Noetherian R-module and let $x, y \in Z(M) \setminus Ann(M)$, xyM = 0 and x, y are nonadjacent vertices of DG(M). Then x - z is an edge of DG(M) for all $z \in Ann(yM) \setminus Ann(M)$.

Proof. Assume that x, y are nonadjacent vertices of DG(M) moreover assume that $\mathfrak{p} \in \operatorname{Assh}(M/xM)$. Thus $y \notin \mathfrak{p}$ so $\operatorname{Ann}(yM) \subseteq \mathfrak{p}$. Hence, $(x, z) \subseteq \mathfrak{p}$ for all $z \in \operatorname{Ann}(yM)$. Therefore, $\dim M/(x, z)M = \dim M/xM$ and x - z is an edge of DG(M).

Theorem 2.6. Let M be a nonzero Noetherian R-module. If DG(M) is a connected graph and $|Z(M) \setminus Ann(M)| \ge 3$, then gr(DG(M)) = 3.

Proof. If there exists $x \in Z(M) \setminus \operatorname{Ann}(M)$ such that $x^2 \neq x$ and $x^2M \neq 0$, then $x - x^2$ is an edge of DG(M). Since DG(M) is connected and x and x^2 have same neighbors so DG(M) contains a cycle of length 3. Thus we may assume that, for all $x \in Z(M) \setminus \operatorname{Ann}(M)$, either $x^2M = 0$ or $x^2 = x$. If $|r(\operatorname{Ann}(M)) \setminus \operatorname{Ann}(M)| \geq 2$, then DG(M) has two universal vertices and so $\operatorname{gr}(DG(M)) = 3$. So we may assume that $r(\operatorname{Ann}(M)) \setminus \operatorname{Ann}(M) \subseteq \{x\}$. SH. PAYROVI

Case 1. Let $r(\operatorname{Ann}(M)) \setminus \operatorname{Ann}(M) = \{x\}$. Then $y^2 = y$ for all $y \in Z(M) \setminus (\operatorname{Ann}(M) \cup \{x\})$. So $y - 1 \in Z(M) \setminus (\operatorname{Ann}(M) \cup \{x, y\})$. If $Z(M) = \operatorname{Ann}(M) \cup \{x, y, y - 1\}$, then for each $\mathfrak{p} \in \operatorname{Ass}(M)$ we have either $\operatorname{Ann}(M) \cup \{x, y\} \subseteq \mathfrak{p} \subset Z(M)$ or $\operatorname{Ann}(M) \cup \{x, y - 1\} \subseteq \mathfrak{p}$. If $\mathfrak{p} = \operatorname{Ann}(M) \cup \{x, y\}$, then $x + y \in \operatorname{Ann}(M)$ which is a contradiction. Hence, $\operatorname{Ann}(M) \cup \{x, y, y - 1\} \subset Z(M)$. Assume that $z \in Z(M) \setminus (\operatorname{Ann}(M) \cup \{x, y, y - 1\})$. Then $x \neq yz$ (x = yz implies that $0 = x^2M = y^2z^2M = yzM = xM$ which is a contradiction). If $yzM \neq 0$, then x - y - yz - x (x - z - yz - x) is a cycle whenever $yz \neq y$ ($yz \neq z$). When yzM = 0 we have $z \in \operatorname{Ann}(yM)$ so it follows that x - z - (y - 1) - x is a cycle by Lemma 2.5.

Case 2. Let $r(\operatorname{Ann}(M)) = \operatorname{Ann}(M)$. Then $y^2 = y$ for all $y \in Z(M) \setminus \operatorname{Ann}(M)$. To prove the assertion it is enough to show that $|\mathfrak{p} \setminus \operatorname{Ann}(M)| \ge 3$ for some $\mathfrak{p} \in \operatorname{Assh}(M)$. Assume that $\mathfrak{p} \in \operatorname{Ass}(M)$ and $\operatorname{Ann}(M) \cup \{y, y - 1, z\} \subseteq Z(M)$. Then $\operatorname{Ann}(M) \cup \{y, z\} \subseteq \mathfrak{p}$ and (y + z)M = 0. As above $z - 1 \in Z(M) \setminus (\operatorname{Ann}(M) \cup \{y, y - 1, z\})$. Hence, $\operatorname{Ann}(M) \cup \{y, y - 1, z, z - 1\} \subseteq Z(M)$. If $Z(M) = \operatorname{Ann}(M) \cup \{y, y - 1, z, z - 1\}$, then by Theorem 2.4 either y is adjacent to y - 1 or z is adjacent to z - 1 which is a contradiction. So $\operatorname{Ann}(M) \cup \{y, y - 1, z, z - 1\} \subset Z(M)$ and $|\mathfrak{p} \setminus \operatorname{Ann}(M)| \ge 3$. Hence, for all $\mathfrak{p} \in \operatorname{Assh}(M)$ we have $|\mathfrak{p} \setminus \operatorname{Ann}(M)| \ge 3$. Therefore, DG(M) contains a cycle of length 3.

3. Relationship between the dimension graphs and zero-divisor graphs

In this section we study the relationship between the dimension graphs and the zero-divisor graphs.

Theorem 3.1. Let $\Gamma(M) = DG(M)$. Then the following statements are true:

- (i) $Z(M) = r(\operatorname{Ann}(M)).$
- (ii) either $Z(M)^2 \subseteq \operatorname{Ann}(M)$ or $Z(M)^3 \subseteq \operatorname{Ann}(M)$.

Proof. (i) Assume that $\Gamma(M) = DG(M)$ and $x \in Z(M) \setminus \operatorname{Ann}(M)$. We have to show that $x \in r(\operatorname{Ann}(M))$. If $x^2M = 0$ we are done. Otherwise, $x^2 \in Z(M) \setminus \operatorname{Ann}(M)$. If $x = x^2$, then $1 - x \in Z(M) \setminus \operatorname{Ann}(M)$, $x \neq 1 - x$ and x(1-x)M = 0. So x, 1-x are adjacent in $\Gamma(M)$. On the other hand, we have $\dim M/(x, 1-x)M = -1 < \min\{\dim M/xM, \dim M/(1-x)M\}$ which shows that x and 1-x are nonadjacent vertices of DG(M). Thus $x \neq x^2$. In this case, by Lemma 2.1(ii), x, x^2 are adjacent in DG(M) hence by the hypotheses $x^3M = 0$. So $Z(M) = r(\operatorname{Ann}(M))$ and DG(M) is a complete graph by Lemma 2.1(ii).

(ii) In the previous paragraph we show that for all $x \in Z(M) \setminus \operatorname{Ann}(M)$ either $x^2M = 0$ or $x^3M = 0$. Thus Z(M) is a prime ideal of R and either $Z(M)^2 \subseteq \operatorname{Ann}(M)$ or $Z(M)^3 \subseteq \operatorname{Ann}(M)$, see [7, Theorem 2.3].

Corollary 3.2. If $\Gamma(M) = DG(M)$, then DG(M) is a complete graph.

Proof. In view of Theorem 3.1 and Corollary 2.2 the result follows.

Corollary 3.3. If $Z(M) = r(\operatorname{Ann}(M))$ and $Z(M)^2 \subseteq \operatorname{Ann}(M)$, then $\Gamma(M) = DG(M)$ is a complete graph.

Proof. In view of Corollary 2.2, DG(M) is complete. Moreover, by $Z(M)^2 \subseteq$ Ann(M) it follows that $\Gamma(M)$ is complete, now the result follows.

Example 3. Let p be a prime number and consider $M = \mathbb{Z}/p^3\mathbb{Z}$ as a \mathbb{Z} -module. Then $p\mathbb{Z} = Z(M) = r(\operatorname{Ann}(M))$ and $Z(M)^3 = p^3\mathbb{Z} \subseteq \operatorname{Ann}(M)$. By Corollary 2.2, DG(M) is a complete graph but $\Gamma(M)$ is not complete.

Lemma 3.4. Let $x, y \in Z(M) \setminus \operatorname{Ann}(M)$ be adjacent vertices in $\Gamma(M)$. Then either x, y are adjacent in DG(M) or $\dim M/yM = \dim M/\operatorname{Ann}_M(x)$ and $\dim M/xM = \dim M/\operatorname{Ann}_M(y)$.

Proof. Suppose that x, y are nonadjacent vertices in DG(M). We have to show that $\dim M/yM = \dim M/\operatorname{Ann}_M(x)$ and $\dim M/xM = \dim M/\operatorname{Ann}_M(y)$, where $\operatorname{Ann}_M(x) = \{m \in M : xm = 0\}$. It is easy to see that $M/\operatorname{Ann}_M(x) \cong xM$ so $\operatorname{Ann}(M/\operatorname{Ann}_M(x)) = \operatorname{Ann}(xM)$. If $\operatorname{Ann}(xM) \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in$ $\operatorname{Spec}(R)$, then by the hypotheses $\operatorname{Ann}(M) + Ry \subseteq \mathfrak{p}$. Therefore, we have $\operatorname{Supp}(M/\operatorname{Ann}_M(x)) \subseteq \operatorname{Supp}(M/yM)$. On the other hand, if $\mathfrak{p} \in \operatorname{Assh}(M/yM)$, then $x \notin \mathfrak{p}$ since $\dim M/(x, y)M < \dim M/xM$. Thus by axM = 0 it follows that $a \in \mathfrak{p}$. Hence, $\operatorname{Ann}(xM) \subseteq \mathfrak{p}$ and therefore $\mathfrak{p} \in \operatorname{Supp}(M/\operatorname{Ann}_M(x))$. So $\dim M/yM = \dim M/\operatorname{Ann}_M(x)$. By a similar argument one can show that $\dim M/\operatorname{Ann}_M(y) = \dim M/xM$. \Box

References

- S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004), no. 2, 847–855. https://doi.org/10.1016/S0021-8693(03)00435-6
- [2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
- D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), no. 2, 543-550. https://doi.org/10.1016/j.jpaa. 2006.10.007
- [4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https: //doi.org/10.1016/0021-8693(88)90202-5
- [5] M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra 4 (2012), no. 2, 175–197. https://doi.org/10.1216/jca-2012-4-2-175
- [6] A. R. Naghipour, The zero-divisor graph of a module, J. Algebr. Syst. 4 (2017), no. 2, 155–171. https://doi.org/10.22044/jas.2017.858
- K. Nozari and S. Payrovi, A generalization of the zero-divisor graph for modules, Publ. Inst. Math. (Beograd) (N.S.) 106(120) (2019), 39-46. https://doi.org/10.2298/ pim1920039n
- [8] S. Safaeeyan, M. Baziar, and E. Momtahan, A generalization of the zero-divisor graph for modules, J. Korean Math. Soc. 51 (2014), no. 1, 87–98. https://doi.org/10.4134/ JKMS.2014.51.1.087
- [9] R. Y. Sharp, Steps in Commutative Algebra, second edition, London Mathematical Society Student Texts, 51, Cambridge Univ. Press, Cambridge, 2000.

SHIROYEH PAYROVI DEPARTMENT OF MATHEMATICS IMAM KHOMEINI INTERNATIONAL UNIVERSITY P. O. BOX: 34149-1-6818, QAZVIN, IRAN *Email address*: shpayrovi@sci.ikiu.ac.ir