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THE DIMENSION GRAPH FOR MODULES OVER

COMMUTATIVE RINGS

Shiroyeh Payrovi

Abstract. Let R be a commutative ring and M be an R-module. The

dimension graph of M , denoted by DG(M), is a simple undirected graph
whose vertex set is Z(M) \Ann(M) and two distinct vertices x and y are

adjacent if and only if dimM/(x, y)M = min{dimM/xM, dimM/yM}.
It is shown that DG(M) is a disconnected graph if and only if

(i) Ass(M) = {p, q}, Z(M) = p ∪ q and Ann(M) = p ∩ q.

(ii) dimM = dimR/p = dimR/q.
(iii) dimM/xM = dimM for all x ∈ Z(M) \Ann(M).

Furthermore, it is shown that diam(DG(M)) ≤ 2 and gr(DG(M)) = 3,

whenever M is Noetherian with |Z(M) \ Ann(M)| ≥ 3 and DG(M) is a
connected graph.

1. Introduction

The zero-divisor graph of a commutative ring was introduced and studied
by I. Beak in [4]. Furthers, D. F. Anderson and P. S. Livingston in [2] studied
the concept of zero-divisor graph on nonzero zero-divisors of a ring. Let R be a
commutative ring and let Z(R) denote its set of zero divisors. The zero-divisor
graph of R is a graph with vertex set Z∗(R) = Z(R) \ {0} and two distinct
vertices x and y are adjacent if and only if xy = 0. The concept of zero-divisor
graph has been studied by many authors, see for examples [1,3] and variations
of zero-divisor graph are created by changing the vertex set, the edge condition,
or both. The concept of the zero-divisor graph for rings has been generalized
for modules in many papers, see for examples [5,6,8]. Let R be a commutative
ring and let M be an R-module. In this paper, we associate a simple graph to
the module M , denoted by DG(M), with vertex set Z(M) \Ann(M) and two
distinct vertices x, y are adjacent if and only if

dimM/(x, y)M = min{dimM/xM, dimM/yM}.
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Note that, in general, dimM/(x, y)M ≤ min{dimM/xM,dimM/yM}. Here,
dimM denotes the Krull dimension of M . In Section 2, for a Noetherian R-
module M we investigate the connectedness, diameter and girth of DG(M).
More precisely, it is shown that diam(DG(M)) ≤ 2 and gr(DG(M)) ∈ {3,∞}.
In Section 3, we study the relationship between the dimension graph and zero-
divisor graph of M .

Before we state some results, let us introduce some graphical notations. Let
G = (V (G), E(G)) be a simple graph, V (G) and E(G) are called vertex set and
edge set of G, respectively. Let x, y ∈ V (G). We write x− y, whenever x and
y are adjacent. The vertex x is called universal when it is adjacent to every
other vertices. We say that G is connected if there is a path between any two
distinct vertices. For vertices x and y of G, we define d(x, y) to be the length
of a shortest path between x and y. If there is no path, then d(x, y) = ∞.
The diameter of G is diam(G) = sup{d(x, y) : x and y are vertices of G}. The
graph G is complete if any two distinct vertices are adjacent and a complete
graph with n vertices is denoted by Kn. The girth of G, denoted by gr(G), is
the length of a shortest cycle in G (gr(G) = ∞ if G contains no cycle).

Throughout this paper, R denotes a commutative ring with nonzero identity
and M denotes a unitary R-module, Ann(M) = {r ∈ R : rM = 0}, Z(M) =
{r ∈ R : rm = 0 for some nonzero m ∈ M} denote the annihilator and the
set of zero-divisors, respectively. Moreover, Ass(M) = {p ∈ Spec(R) : p =
Ann(m) for some nonzero m ∈ M} denotes the set of associated prime ideals
of M and Assh(M) = {p ∈ Ass(M) : dimM = dimR/p}. For notations and
terminologies not given in this paper, the reader is referred to [9].

2. Basic properties of dimension graph for modules

Let R be a commutative ring and M be an R-module. The Krull dimension
of M , denoted by dimM , is defined to be the supremum of lengths of chains
of prime ideals of R which lay in Supp(M) if this supremum exists, and ∞
otherwise.

Definition. Let M be an R-module. The dimension graph of M , denoted
by DG(M), is a simple undirected graph associated to M with the vertex set
Z(M)\Ann(M) and a pair of distinct vertices x and y are adjacent if and only
if

dimM/(x, y)M = min{dimM/xM,dimM/yM}.

Lemma 2.1. Let M be an R-module and let x ∈ Z(M) \ Ann(M). Then the
following statements are true:

(i) If xM = M , then x is a universal vertex of DG(M).
(ii) If M is Noetherian and x ∈ r(Ann(M)), then x is a universal vertex

of DG(M). In particular, if |Ass(M)| = 1, then DG(M) is a complete
graph.
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(iii) If xM ⊆ yM for some y ∈ Z(R) \ Ann(M), then x, y are adjacent in
DG(M). In particular, if xy ̸= 0 and x ̸= xy, then x, xy are adjacent
in DG(M).

Proof. (i) Since M = xM = (x, y)M for any y ∈ Z(M) \Ann(M), x and y are
adjacent. Note that, if M is Noetherian, then xM ̸= M .

(ii) Let x ∈ r(Ann(M)). Then x ∈
⋂

Ann(M)⊆p p so dimM/xM = dimM .

Assume that y ∈ Z(M)\Ann(M) and x ̸= y. It is obvious that dimM/(x, y)M
≤ min{dimM/xM, dimM/yM}. Furthermore, for all p ∈ Supp(M) with y ∈ p
we have x ∈ p. Thus dimM/(x, y)M = dimM/yM so x and y are adjacent.

(iii) Suppose that y ∈ Z(R)\Ann(M) and xM ⊆ yM . Since (x, y)M = yM ,
we have dimM/(x, y)M = dimM/yM so x and y are adjacent in DG(M). The
second part now is obvious. □

Corollary 2.2. If M is a Noetherian R-module and Z(M) = r(Ann(M)), then
DG(M) is a complete graph.

Proof. It is an immediate consequence of Lemma 2.1(ii). □

The second part of the following example shows that the converse of Corol-
lary 2.2 is not true, necessarily.

Example 1. (i) Let p be a prime number and consider M = Zp∞ as a Z-
module. Then pZ = Z(M) ̸= r(Ann(M)) = 0. By Lemma 2.1(i), DG(M) is a
complete graph so p is a universal vertex but p ̸∈ r(Ann(M)).

(ii) Let k be a field and consider the residue ring R of the ring k[X1, X2] of
polynomials over k in indeterminates X1, X2 given by R = k[X1, X2]/(X1) ∩
(X2

1 , X2). For each i = 1, 2, let xi denotes the natural image ofXi in R. Then it
is easy to see that DG(R) is a complete graph but (x1, x2) = Z(R) ̸= Nil(R) =
(x1).

(iii) Let k be a field and consider the residue ring R of the ring k[X1, X2, X3]
of polynomials over k in indeterminatesX1, X2, X3 given byR = k[X1, X2, X3]/
(X1) ∩ (X2

1 , X2, X3). For each i = 1, 2, 3, let xi denote the natural image of
Xi in R. Then DG(R) is not a complete graph since dimR/(x1 + x2)R = 1,
dimR/x3R = 1 and dimR/(x1 + x2, x3)R = 0 moreover (x1, x2, x3) = Z(R) ̸=
Nil(R) = (x1).

Theorem 2.3. Let M be a Noetherian R-module. Then DG(M) is discon-
nected if and only if the following conditions are true:

(i) r(Ann(M)) = Ann(M) = p ∩ q, Z(M) = p ∪ q and Ass(M) = {p, q}.
(ii) dimM = dimR/p = dimR/q.
(iii) dimM/xM = dimM , for all x ∈ Z(M) \Ann(M).

Proof. (i) LetDG(M) be a disconnected graph. Then in view of Lemma 2.1(ii),
r(Ann(M)) = Ann(M) and there are x, y ∈ Z(M) \ Ann(M) such that there
is no path between them. If xyM ̸= 0, then by the hypotheses x ̸= xy, y ̸= xy
and x − xy − y is a path in DG(M) that is a contradiction. Thus we may
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assume that xyM = 0. If there exists z ∈ Z(M)\(Ann(xM)∪Ann(yM)), then
x−xz−z−yz−y is a path in DG(M) which is a contradiction. Hence, Z(M) =
Ann(xM) ∪ Ann(yM). Since r(Ann(M)) = Ann(M), therefore Ann(xM) ̸⊆
Ann(yM) and Ann(yM) ̸⊆ Ann(xM). Hence, p = Ann(xM), q = Ann(yM)
are associated prime ideals of M and y ∈ p \ q, x ∈ q \ p, see [9, Lemma 9.36].
Assume that p0 ⊂ p1 ⊂ · · · ⊂ pt = p and q0 ⊂ q1 ⊂ · · · ⊂ qk = q are chains
of prime ideals of R, where pi and qj belong to Ass(M) for all i = 0, 1, . . . , t
and j = 0, 1, . . . , k. Thus from xyM = 0 it follows that y ∈ pi and x ∈ qj
for all i = 0, 1, . . . , t and j = 0, 1, . . . , k. Suppose that z ∈ p ∩ q \ Ann(M). If
z ∈ pi \pi−1 and z ∈ qj \ qj−1 for some 0 ≤ i ≤ t and 0 ≤ j ≤ k, then y− z and
z − x are two edges of DG(M) so y − z − x is a path which is a contradiction.
Hence, p ∩ q = Ann(M).

(ii) Note that by the previous paragraph it follows that dimM/xM =
dimR/q and dimM/yM = dimR/p. Now, we show that dimM/xM =
dimM/yM . Assume that k = dimM/xM < t = dimM/yM and look for
a contradiction. Suppose that Ann(M) + Rx ⊆ q = q0 ⊂ q1 ⊂ · · · ⊂ qk and
Ann(M) + Ry ⊆ p = p0 ⊂ p1 ⊂ · · · ⊂ pt are chains of prime ideals of R. Let
k = t − 1 and z ∈ p1 ∩ q \ p. Then dimM/(y, z)M = t − 1 = dimM/zM so
y − z is an edge of DG(M). On the other hand, each nonzero element of q is
adjacent to x thus x − z is an edge of DG(M). Hence, x − z − y is a path
and this is a contradiction. Therefore, dimM/xM = dimM/yM = dimM so
Assh(M) = {p′ ∈ Ass(M) : dimM = dimR/p′} = {p, q}.

In the following we show that, for all z ∈ Z(M)\Ann(M), either Ann(zM) =
Ann(xM) or Ann(zM) = Ann(yM). Without loss of generality, we may assume
that Ann(zM) ⊆ Ann(xM). So xzM ̸= 0 and z ∈ Ann(yM). If there is
w ∈ Ann(xM) \ Ann(zM), then wz ∈ Ann(xM) ∩ Ann(yM) contrary to the
assumption. Therefore, Ann(zM) = Ann(xM) = p so dimM/zM = dimR/q.

Conversely, assume that M satisfies the conditions (i), (ii) and (iii). Thus
dimM = dimR/p = dimR/q and therefore elements of p \ Ann(M) make
a clique and elements of q \ Ann(M) make a clique too. Let x ∈ q \ p and
y ∈ p \ q. If dimM/(x, y)M = dimM , then either y ∈ p or x ∈ q which
is a contradiction. Thus x, y are nonadjacent vertices of DG(M). Hence,
DG(M) = K|p\Ann(M)| ∪K|q\Ann(M)| and therefore DG(M) is disconnect. □

Example 2. (i) Let M be an Artinian R-module and let x, y be a pair of
distinct vertices of DG(M) such that xM ̸= M , yM ̸= M . Then x and y are
adjacent if and only if (x, y)M ⊂ M .

(ii) Let M be a Noetherian and Artinian R-module and let x, y be a pair of
distinct vertices of DG(M). Then x and y are adjacent if and only if (x, y)M ⊂
M .

(iii) Let R be a finite ring and let x, y be a pair of distinct vertices of DG(R).
Then x and y are adjacent if and only if (x, y)R ⊂ R. In particular, for a finite
local ring R, DG(R) is a complete graph.
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(iv) Suppose that p, q are prime numbers and m,n are positive integers such
that m ≥ 2 or n ≥ 2. By (iii) it is clear that DG(Zpm) = Kpm−1(p−1) is a
complete graph whereas DG(Zpq) = K|pZ∗

pq| ∪K|qZ∗
pq| is a disconnected graph

with two component of disconnectedness, see Theorem 2.3.

Theorem 2.4. If M is a Noetherian R-module and DG(M) is a connected
graph, then diam(DG(M)) ≤ 2.

Proof. If r(Ann(M)) ̸= Ann(M), then diam(DG(M)) ≤ 2 since DG(M) has a
universal vertex, see Lemma 2.1(ii). Thus we may assume that r(Ann(M)) =
Ann(M). Let x, y ∈ Z(M) \ Ann(M) be nonadjacent vertices of DG(M). If
xyM ̸= 0, then x − xy − y is a path in DG(M) so d(x, y) ≤ 2. Now, suppose
that xyM = 0. If |Ass(M)| = 1 or Ass(M) = {p, q} and p ⊆ q, then Ann(M)
is a prime ideal so either x ∈ Ann(M) or y ∈ Ann(M) that is a contradiction.
Thus we may assume that Ass(M) = {p, q} and p ̸⊆ q, q ̸⊆ p. Hence, x ∈ p \ q
and y ∈ q \ p. Now, a similar argument to that of Theorem 2.3 shows that
d(x, y) ≤ 2. Suppose that Ass(M) = {p1, . . . , pn} (n ≥ 3) we have the following
three cases:
Case 1. If MinAss(M) = {p1}, then Ann(M) = p1 so either x ∈ p1 or y ∈ p1
that is a contradiction.
Case 2. If MinAss(M) = {p1, p2} and n = dimM = dimR/p1 = dimR/p2,
then Ann(M) = p1 ∩ p2 and we can assume that x ∈ p1 \ p2 and y ∈ p2 \ p1.
Assume that p3, p4 ∈ Ass(M) are such that p1 ⊂ p3, p2 ⊂ p4 and dimR/p3 =
dimR/p4 = n−1. Then x−z−y is a path inDG(M) for each z ∈ p3∩p4\p1∪p2.
If n = dimM = dimR/p1 > dimR/p2 = t, then we may assume that p1 ⊂ p3
and dimR/p3 = n−1. Now, x−z−y is a path inDG(M) for each z ∈ p3∩p2\p1.
Case 3. If MinAss(M) = {p1, p2, p3}, then Ann(M) ̸= p1 ∩ p2 and x − z − y
is a path in DG(M) for each z ∈ p1 ∩ p2 \Ann(M). □

Lemma 2.5. Let M be a nonzero Noetherian R-module and let x, y ∈ Z(M) \
Ann(M), xyM = 0 and x, y are nonadjacent vertices of DG(M). Then x − z
is an edge of DG(M) for all z ∈ Ann(yM) \Ann(M).

Proof. Assume that x, y are nonadjacent vertices of DG(M) moreover assume
that p ∈ Assh(M/xM). Thus y ̸∈ p so Ann(yM) ⊆ p. Hence, (x, z) ⊆ p for all
z ∈ Ann(yM). Therefore, dimM/(x, z)M = dimM/xM and x − z is an edge
of DG(M). □

Theorem 2.6. Let M be a nonzero Noetherian R-module. If DG(M) is a
connected graph and |Z(M) \Ann(M)| ≥ 3, then gr(DG(M)) = 3.

Proof. If there exists x ∈ Z(M) \ Ann(M) such that x2 ̸= x and x2M ̸= 0,
then x − x2 is an edge of DG(M). Since DG(M) is connected and x and x2

have same neighbors so DG(M) contains a cycle of length 3. Thus we may
assume that, for all x ∈ Z(M) \ Ann(M), either x2M = 0 or x2 = x. If
|r(Ann(M)) \ Ann(M)| ≥ 2, then DG(M) has two universal vertices and so
gr(DG(M)) = 3. So we may assume that r(Ann(M)) \Ann(M) ⊆ {x}.
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Case 1. Let r(Ann(M)) \ Ann(M) = {x}. Then y2 = y for all y ∈ Z(M) \
(Ann(M)∪{x}). So y− 1 ∈ Z(M) \ (Ann(M)∪{x, y}). If Z(M) = Ann(M)∪
{x, y, y − 1}, then for each p ∈ Ass(M) we have either Ann(M) ∪ {x, y} ⊆ p ⊂
Z(M) or Ann(M)∪{x, y−1} ⊆ p. If p = Ann(M)∪{x, y}, then x+y ∈ Ann(M)
which is a contradiction. Hence, Ann(M)∪{x, y, y−1} ⊂ Z(M). Assume that
z ∈ Z(M) \ (Ann(M) ∪ {x, y, y − 1}). Then x ̸= yz (x = yz implies that
0 = x2M = y2z2M = yzM = xM which is a contradiction). If yzM ̸= 0, then
x − y − yz − x (x − z − yz − x) is a cycle whenever yz ̸= y (yz ̸= z). When
yzM = 0 we have z ∈ Ann(yM) so it follows that x− z− (y− 1)− x is a cycle
by Lemma 2.5.
Case 2. Let r(Ann(M)) = Ann(M). Then y2 = y for all y ∈ Z(M)\Ann(M).
To prove the assertion it is enough to show that |p \ Ann(M)| ≥ 3 for some
p ∈ Assh(M). Assume that p ∈ Ass(M) and Ann(M) ∪ {y, y − 1, z} ⊆ Z(M).
Then Ann(M) ∪ {y, z} ⊆ p and (y + z)M = 0. As above z − 1 ∈ Z(M) \
(Ann(M) ∪ {y, y − 1, z}). Hence, Ann(M) ∪ {y, y − 1, z, z − 1} ⊆ Z(M). If
Z(M) = Ann(M)∪{y, y−1, z, z−1}, then by Theorem 2.4 either y is adjacent
to y− 1 or z is adjacent to z− 1 which is a contradiction. So Ann(M)∪{y, y−
1, z, z−1} ⊂ Z(M) and |p\Ann(M)| ≥ 3. Hence, for all p ∈ Assh(M) we have
|p \Ann(M)| ≥ 3. Therefore, DG(M) contains a cycle of length 3. □

3. Relationship between the dimension graphs and zero-divisor
graphs

In this section we study the relationship between the dimension graphs and
the zero-divisor graphs.

Theorem 3.1. Let Γ(M) = DG(M). Then the following statements are true:

(i) Z(M) = r(Ann(M)).
(ii) either Z(M)2 ⊆ Ann(M) or Z(M)3 ⊆ Ann(M).

Proof. (i) Assume that Γ(M) = DG(M) and x ∈ Z(M) \ Ann(M). We have
to show that x ∈ r(Ann(M)). If x2M = 0 we are done. Otherwise, x2 ∈
Z(M) \ Ann(M). If x = x2, then 1 − x ∈ Z(M) \ Ann(M), x ̸= 1 − x and
x(1− x)M = 0. So x, 1− x are adjacent in Γ(M). On the other hand, we have
dimM/(x, 1 − x)M = −1 < min{dimM/xM, dimM/(1 − x)M} which shows
that x and 1 − x are nonadjacent vertices of DG(M). Thus x ̸= x2. In this
case, by Lemma 2.1(ii), x, x2 are adjacent in DG(M) hence by the hypotheses
x3M = 0. So Z(M) = r(Ann(M)) and DG(M) is a complete graph by Lemma
2.1(ii).

(ii) In the previous paragraph we show that for all x ∈ Z(M) \ Ann(M)
either x2M = 0 or x3M = 0. Thus Z(M) is a prime ideal of R and either
Z(M)2 ⊆ Ann(M) or Z(M)3 ⊆ Ann(M), see [7, Theorem 2.3]. □

Corollary 3.2. If Γ(M) = DG(M), then DG(M) is a complete graph.

Proof. In view of Theorem 3.1 and Corollary 2.2 the result follows. □
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Corollary 3.3. If Z(M) = r(Ann(M)) and Z(M)2 ⊆ Ann(M), then Γ(M) =
DG(M) is a complete graph.

Proof. In view of Corollary 2.2, DG(M) is complete. Moreover, by Z(M)2 ⊆
Ann(M) it follows that Γ(M) is complete, now the result follows. □

Example 3. Let p be a prime number and considerM = Z/p3Z as a Z-module.
Then pZ = Z(M) = r(Ann(M)) and Z(M)3 = p3Z ⊆ Ann(M). By Corollary
2.2, DG(M) is a complete graph but Γ(M) is not complete.

Lemma 3.4. Let x, y ∈ Z(M) \ Ann(M) be adjacent vertices in Γ(M). Then
either x, y are adjacent in DG(M) or dimM/yM = dimM/AnnM (x) and
dimM/xM = dimM/AnnM (y).

Proof. Suppose that x, y are nonadjacent vertices in DG(M). We have to show
that dimM/yM = dimM/AnnM (x) and dimM/xM = dimM/AnnM (y),
where AnnM (x) = {m ∈ M : xm = 0}. It is easy to see that M/AnnM (x) ∼=
xM so Ann(M/AnnM (x)) = Ann(xM). If Ann(xM) ⊆ p for some p ∈
Spec(R), then by the hypotheses Ann(M) + Ry ⊆ p. Therefore, we have
Supp(M/AnnM (x)) ⊆ Supp(M/yM). On the other hand, if p ∈ Assh(M/yM),
then x ̸∈ p since dimM/(x, y)M < dimM/xM . Thus by axM = 0 it follows
that a ∈ p. Hence, Ann(xM) ⊆ p and therefore p ∈ Supp(M/AnnM (x)). So
dimM/yM = dimM/AnnM (x). By a similar argument one can show that
dimM/AnnM (y) = dimM/xM . □
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