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THE ANNIHILATOR IDEAL GRAPH

OF A COMMUTATIVE RING

Abolfazl Alibemani, Moharram Bakhtyiari, Reza Nikandish,

and Mohammad Javad Nikmehr

Abstract. Let R be a commutative ring with unity. The annihilator
ideal graph of R, denoted by ΓAnn(R), is a graph whose vertices are all
non-trivial ideals of R and two distinct vertices I and J are adjacent if and
only if I ∩ Ann(J) 6= {0} or J ∩ Ann(I) 6= {0}. In this paper, we study
some connections between the graph-theoretic properties of this graph
and some algebraic properties of rings. We characterize all rings whose
annihilator ideal graphs are totally disconnected. Also, we study diame-
ter, girth, clique number and chromatic number of this graph. Moreover,
we study some relations between annihilator ideal graph and zero-divisor
graph associated with R. Among other results, it is proved that for a
Noetherian ring R if ΓAnn(R) is triangle free, then R is Gorenstein.

1. Introduction

Recently, using graph theoretical tools in the investigation of rings attracted
many researchers. There are many papers on assigning a graph to rings, see
for example [1], [2], [6], [7] and [10]. When one assigns a graph to an algebraic
structure numerous interesting algebraic problems arise from the translation
of some graph-theoretic parameters such as clique number, chromatic number,
independence number and so on. The main purpose of this paper is to introduce
and study a new graph-annihilator ideal graph-associated with a ring.

Throughout this paper R is a commutative ring with unity. The sets of
all zero-divisors, nilpotent elements, non-trivial ideals, minimal prime ideals,
maximal ideals, jacobson radical and the set of prime ideals of R are denoted by
Z(R), Nil(R), I(R), Min(R), Max(R), J(R) and Spec(R), respectively. Also,
we denote by Zn and Z(M) the integers modulo n and the set of all zero-
divisors of an R-module M . A non-zero ideal I of R is called essential, denoted
by I ≤e R, if I has a non-zero intersection with any non-zero ideal of R. The
ring R is said to be reduced if it has no non-zero nilpotent element. The socle

of an R-module M , denoted by soc(M), is the sum of all simple submodules
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of M . If there are no simple submodules, this sum is defined to be zero. It
is well known soc(M) is the intersection of all essential submodules (see [13,
21.1]). By dim(R) and depth(R), we mean the dimension and depth of R, see
[11]. We write depth(R) = 0 if and only if every non-unit element of a ring
R is zero-divisor. We say x is a regular element of R if x is non-unit and non
zero-divisor.

Let G = (V,E) be a graph, where V = V (G) is the set of vertices and E =
E(G) is the set of edges. By G, diam(G) and gr(G), we mean the complement,
the diameter and the girth of G, respectively. Also, for a vertex v ∈ V , the
degree of v is denoted by deg(v) and the maximum degree in a graph G denoted
by ∆(G). The graph H = (V0, E0) is a subgraph of G if V0 ⊆ V and E0 ⊆ E.
Moreover, H is called an induced subgraph by V0, if V0 ⊆ V and E0 = {{u, v} ∈
E |u, v ∈ V0}. For two vertices u and v in G, the notation u − v means that
u and v are adjacent. A graph G is said to be totally disconnected if it has no
edge. The chromatic number of G, denoted by χ(G), is the minimal number of
colors which can be assigned to the vertices of G in such a way that every two
adjacent vertices have different colors. A complete bipartite graph with part
sizes m and n is denoted by Km,n. If the size of one of the parts is 1, then the
graph is said to be a star graph. A clique of G is a complete subgraph of G
and the number of vertices in a largest clique of G, denoted by ω(G), is called
the clique number of G. In a graph G, a set S ⊆ V (G) is an independent set if
the subgraph induced by S is totally disconnected. The independence number

α(G) is the maximum size of an independent set in G. A forest is a graph
with no cycle. Let G1 and G2 be two disjoint graphs. The join of G1 and G2,
denoted by G1∨G2, is a graph with the vertex set V (G1∨G2) = V (G1)∪V (G2)
and edge set E(G1 ∨G2) = E(G1) ∪ E(G2) ∪ {uv |u ∈ V (G1), v ∈ V (G2)}.

Let R be a commutative ring with 1 6= 0. Authors in [2], introduced the
zero-divisor graph of R, denoted by Γ(R), as the graph with the vertex set
Z∗(R) = Z(R) \ {0}, and two distinct vertices x and y are adjacent if and only
if xy = 0. The annihilator ideal graph of R, denoted by ΓAnn(R), is a graph
whose vertices are all non-trivial ideals of R and two distinct vertices I and J
are adjacent if and only if I ∩ Ann(J) 6= {0} or J ∩ Ann(I) 6= {0}. Since the
most properties of a ring are closely tied to the behavior of its ideals, one may
expect that the annihilator ideal graph of a ring reflects many properties of a
ring.

2. The diameter and girth of ΓAnn(R)

In this section, we study the diameter and the girth of the annihilator ideal
graph of a ring. It is proved that if ΓAnn(R) is connected, then diam(ΓAnn(R))
≤ 2. Also if ΓAnn(R) contains a cycle, then gr(ΓAnn(R)) ≤ 3. Finally, we
investigate some relations between the diameters of ΓAnn(R) and Γ(R).

Lemma 1. Let R be a ring. Then ΓAnn(R) is totally disconnected if and only

if either R is an integral domain or R has only one non-zero proper ideal.
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Proof. One side is clear. To prove the other side, suppose that ΓAnn(R) is
totally disconnected with at least two vertices. We show that R is an integral
domain. Assume to the contrary, x is a non-zero zero-divisor in R. Clearly
Ann(x) 6= {0}. Let I ∈ I(R) \ {Ann(x)}. If I ∩ Ann(x) = {0}, then I is
adjacent to Ann(x), which is impossible. Thus suppose that there exists a non-
zero element in I ∩ Ann(x), say y. If Rx = Ry, then I is adjacent to Ann(x)
and if Rx 6= Ry, then Rx is adjacent to Ry. So, ΓAnn(R) contains an edge, a
contradiction. Therefore, R is an integral domain. �

In the next theorem, it is proved that if R is not an integral domain, then
ΓAnn(R) is a connected graph of diameter at most 2.

Theorem 2. Let R be a ring. Then diam(ΓAnn(R)) ∈ {0, 1, 2,∞}. In partic-

ular, if R is not an integral domain, then ΓAnn(R) is connected.

Proof. Suppose that R is not an integral domain and I, J are two non-adjacent
vertices of ΓAnn(R). Since I and J are not adjacent, we deduce that IJ 6= {0}.
Let x be a non-zero zero-divisor element in I ∩ J and y ∈ Ann(x). Now, if
Ry, I and J are distinct, then we find the path I − Ry − J . Not that if Ry
is equal to one of the ideals I or J , then I would be adjacent to J , which
is impossible. Therefore, diam(ΓAnn(R)) ∈ {1, 2}. Finally, if either R is an
integral domain or R has only one non-zero proper ideal, then by Lemma 1, we
have diam(ΓAnn(R)) ∈ {0,∞}. Therefore, diam(ΓAnn(R)) ∈ {0, 1, 2,∞}. �

The next corollary is an immediate consequence of Theorem 2.

Corollary 3. Suppose that R is not an integral domain. Then ΓAnn(R) is a

bipartite graph if and only if it is a complete bipartite graph.

To determine the girth of ΓAnn(R), the following lemma is needed.

Lemma 4. Let R be a non-reduced ring. Then there exists a vertex of ΓAnn(R)
which is adjacent to every other vertex.

Proof. Since R is a non-reduced ring, we may assume that there exists a non-
trivial ideal I in R such that I2 = {0}. We show that I is adjacent to every
other vertex. Let J be a non-trivial ideal in R. If I ∩ J = {0}, then clearly I
is adjacent to J . Otherwise, if I ∩ J 6= {0}, then I2 = {0} implies that I is
adjacent to J . This completes the proof. �

Theorem 5. Let R be a ring. Then gr(ΓAnn(R)) ∈ {3,∞}.

Proof. Suppose that R is a non-reduced ring. Then by Lemma 4, gr(ΓAnn(R))
∈ {3,∞}. Now assume that R is a reduced ring. If R is decomposable, then
it is not hard to see that gr(ΓAnn(R)) ∈ {3,∞}. Hence, we may assume that
R is indecomposable. Now, if R is an integral domain, then by Lemma 1,
gr(ΓAnn(R)) = ∞. Otherwise, let I ∈ I(R) be such that Ann(I) 6= {0}. Since
R is a reduced indecomposable ring, m is essential and Ann(m) = {0}, for
every m ∈ Max(R). Then I−Ann(I)−m− I is a triangle in ΓAnn(R), for some
m ∈ Max(R). Therefore, the proof is complete. �
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By [2, Theorem 2.3], Γ(R) is connected and diam(Γ(R)) ≤ 3, for every ring
R. In the next theorem, we study some relations between the diameters of
ΓAnn(R) and Γ(R).

Theorem 6. Let R be a ring. Then the following statements hold:

(i) If diam(Γ(R)) = 0, then diam(ΓAnn(R)) = 0.
(ii) If diam(Γ(R)) = 1, then diam(ΓAnn(R)) = 0 or 1.
(iii) If diam(Γ(R)) = 2, then diam(ΓAnn(R)) = 1 or 2.
(iv) If diam(Γ(R)) = 3, then diam(ΓAnn(R)) = 1 or 2.
(v) If diam(ΓAnn(R)) = 0 and R is not an integral domain, then

diam(Γ(R)) = 0 or 1.
(vi) If diam(ΓAnn(R)) = 1, then diam(Γ(R)) = 1 or 2 or 3.
(vii) If diam(ΓAnn(R)) = 2, then diam(Γ(R)) = 2 or 3.

Proof. (i) Suppose that diam(Γ(R)) = 0. Then |Z(R)| = 2 and so it is not

hard to see that R is isomorphic to one of the rings Z4 or Z2[x]
(x2) . By Lemma 1,

diam(ΓAnn(R)) = 0.
(ii) Suppose that diam(Γ(R)) = 1. Then by [2, Theorem 2.8], R ∼= Z2 × Z2

or xy = 0 for all x, y ∈ Z(R), and R is not isomorphic to either Z4 or Z2[x]
(x2) .

If R ∼= Z2 × Z2, then obviously diam(ΓAnn(R)) = 1. Also, if xy = 0 for all

x, y ∈ Z(R), and R is not isomorphic to either Z4 or Z2[x]
(x2) , then ΓAnn(R) is

a complete graph and hence diam(ΓAnn(R)) ≤ 1. Note that if |I(R)| = 1
(say Zp2 , where p is a prime number), then diam(ΓAnn(R)) = 0. Therefore,
diam(ΓAnn(R)) = 0 or 1.

(iii) Suppose that diam(Γ(R)) = 2. If diam(ΓAnn(R)) = 0, then R has only
one non-trivial ideal I such that I2 = {0} (i.e., Z(R) = I). Thus Γ(R) is a
complete graph and hence diam(Γ(R)) = 0 or 1. Therefore, diam(ΓAnn(R)) =
1 or 2. Now we show that these two cases may occur. To see this, let R1

∼=
Z2 × Z and R2

∼= Z3 × Z3. Then it is not hard to see that diam(Γ(R1)) =
diam(Γ(R2)) = 2, but diam(ΓAnn(R1)) = 2 and diam(ΓAnn(R2)) = 1.

(iv) Suppose that diam(Γ(R)) = 3. Then there exist x, y ∈ Z∗(R) such that
d(x, y) = 3. Let x− a− b− y be the shortest path between x, y in Γ(R), where
a, b ∈ Z∗(R). If Ra = Rb, then Ann(Ra) = Ann(Rb), which is a contradiction.
Thus Ra 6= Rb and so diam(ΓAnn(R)) = 1 or 2. Now we show that these two

cases may happen. To see this, letR1
∼= Z2×Z4, R2

∼= Z2×
Z2[X1,...,Xi,... ]
(X2

1
,...,X2

i
,... )

. Then

it is easy to see that diam(Γ(R1)) = diam(Γ(R2)) = 3, but diam(ΓAnn(R1)) = 1
and diam(ΓAnn(R2)) = 2.

(v) Suppose that diam(ΓAnn(R)) = 0 and R is not an integral domain. Then
R has only one non-trivial ideal I such that I2 = {0} (i.e., Z(R) = I). Thus
clearly Γ(R) is a complete graph and hence diam(Γ(R)) = 0 or 1. These two
cases may happen. Let R1

∼= Z4 and R2
∼= Z9. Then diam(ΓAnn(R1)) =

diam(ΓAnn(R2)) = 0, but diam(Γ(R1)) = 0 and diam(Γ(R1)) = 1.
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(vi) Suppose that diam(ΓAnn(R)) = 1. If diam(Γ(R)) = 0, then R is iso-

morphic to one of the rings Z4 or Z2[x]
(x2) . Thus diam(ΓAnn(R)) = 0, which is a

contradiction. Hence diam(Γ(R)) = 1 or 2 or 3. These three cases may hap-
pen. If R1

∼= Z2 × Z2, R2
∼= Z6 and R3

∼= Z2 × Z4, then diam(ΓAnn(R1)) =
diam(ΓAnn(R2)) = diam(ΓAnn(R3)) = 1, but diam(Γ(R1)) = 1, diam(Γ(R2)) =
2 and diam(Γ(R3)) = 3.

(vii) Suppose that diam(ΓAnn(R)) = 2. Then by statements (a) and (b),
diam(Γ(R)) = 2 or 3. Now we show that these two cases may occur. To see

this, let R1
∼= Z2 × Z and R2

∼= Z2 ×
Z2[X1,...,Xi,... ]
(X2

1
,...,X2

i
,... )

. Then diam(ΓAnn(R1)) =

diam(ΓAnn(R2)) = 2 and it easily seen that diam(Γ(R1)) = 2 and diam(Γ(R2))
= 3. �

3. Rings whose annihilator ideal graphs are complete

In this section, we study rings whose annihilator ideal graphs are complete.
It is proved that if R is Artinian, then ΓAnn(R) is a complete graph.

To prove Theorem 10, we need two next lemmas.

Lemma 7. Assume that R is a non-reduced Noetherian ring with depth(R) =
0. Then one of the following statements holds:

(i) Ann(m) ⊆ m for every m ∈ Max(R).
(ii) R ∼= F1 ⊕ · · · ⊕ Fk ⊕ S, where every Fi is a field, for 1 ≤ i ≤ k, and S

is a ring such that Ann(m) ⊆ m for every m ∈ Max(S).

Proof. Since depth(R) = 0, [4, Proposition 1.2.1] implies that Ann(m) 6= {0},
for every m ∈ Max(R). By [11, Corollary 9.36] and the prime avoidance the-
orem (see [11, Theorem 3.61 ]), |Max(R)| < ∞. Let |Max(R)| = n for some
positive integer n. If Ann(m) ⊆ m for all maximal ideals m in R, then the
proof is complete. Now, suppose that there exists a maximal ideal m in R
such that Ann(m) * m. So, Ann(m) +m = R and hence, by [11, Lemma 3.58],
Ann(m)∩m = Ann(m)m = 0. By Chinese remainder theorem (see [11, Exercise
3.60]), R ∼= R/m ⊕ R/Ann(m). It is not hard to see that R/Ann(m) is also
Noetherian, depth(R/Ann(m)) = 0 and R/Ann(m) has n − 1 maximal ideals.
Finally, by induction on n, the result holds. �

Lemma 8. Let R be a Noetherian ring. Then the subgraph induced by nilpotent

ideals of R is complete.

Proof. Suppose that I and J are two distinct non-zero nilpotent ideals of R.
Thus there exists n ∈ N such that Jn = {0} and Jn−1 6= {0}. If IJ = {0}, then
I is adjacent to J . Hence we may assume that IJ 6= {0}. If IJn−1 6= {0}, then
I∩Ann(J) 6= {0} and hence I is adjacent to J . Otherwise, if IJn−1 = {0}, then
J ∩Ann(I) 6= {0} and hence I is adjacent to J . This completes the proof. �

The following remark will be used frequently in this paper.
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Remark 9. It is well known that a commutative ring R is Noetherian and
soc(R) ≤e R if and only if R is Artinian. (This is not true for arbitrary right
Noetherian rings.) The interested reader may find a generalization of this fact
for every unitary (not necessarily commutative) ring in [5, Theorem 2.5].

Theorem 10. Let R be a ring.

(i) If R is an Artinian ring, then ΓAnn(R) is a complete graph.

(ii) Conversely, if R is non-reduced, Noetherian, soc(Nil(R)) ≤e Nil(R) and
ΓAnn(R) is a complete graph, then R is an Artinian ring.

Proof. (i) Suppose that R is an Artinian ring. Then by [11, Exercise 8.50],
R ∼= R1 × · · · × Rn, where Ri is an Artinian local ring with maximal ideal
mi for every 1 ≤ i ≤ n. If n = 1, then Lemma 8 implies that ΓAnn(R) is
complete. Assume that n ≥ 2. Let I = I1 × · · · × In and J = J1 × · · · × Jn
be two non-trivial distinct ideals of R. Since I and J are distinct, there exists
k ∈ {1, . . . , n} such that Ik 6= Jk. If Jk = Rk, then J ∩ Ann(I) 6= {0} and so
I is adjacent to J . If Jk = {0}, then I ∩ Ann(J) 6= {0} and so I and J are
adjacent. If Ik and Jk are non-trivial ideals of Rk, then since Ik is adjacent to
Jk in ΓAnn(Rk), we have J ∩ Ann(I) 6= {0} or I ∩ Ann(J) 6= {0} and hence I
and J are adjacent in ΓAnn(R), as desired.

(ii) Suppose that ΓAnn(R) is a complete graph. If R contains a regular
element, say x, then it is easy to see that Rx is not adjacent to Rx2 in ΓAnn(R),
a contradiction. Thus depth(R) = 0, and hence [4, Proposition 1.2.1] implies
that Ann(m) 6= {0}, for every m ∈ Max(R). By the prime avoidance theorem
(see [11, Theorem 3.61 ]) and [11, Corollary 9.36], R contains a finite number of
maximal ideals. Thus by Lemma 7, with no loss of generality, one can suppose
that Ann(m) ⊆ m for all m ∈ Max(R). Let Max(R) = {m1, . . . ,mn}. We
claim that mi ≤e R for every 1 ≤ i ≤ n. Suppose to the contrary, there exists
1 ≤ i ≤ n such that mi is not essential in R. Hence mi ∩ I = {0} for some
non-zero ideal I of R. As Ann(mi) ⊆ mi, Ann(mi)∩ I = {0}. This implies that
I ⊆ Ann(Ann(mi)) = mi which is a contradiction and so the claim is proved.
By [13, 17.3], J(R) =

⋂n
i=1 mi ≤e R. Hence soc(R) ⊆ J(R). If K is a minimal

ideal of R, then either K2 = 0 or K = eR for some idempotent e ∈ K. Now
K = eR implies that K = 0, by [11, Lemma 3.17], because soc(R) ⊆ J(R).
HenceK2 = 0 andK ⊆ Nil(R). Thus soc(R) ⊆ Nil(R). On the other hand, [13,
21.2] implies that soc(Nil(R)) = soc(R) ∩ Nil(R). Thus soc(Nil(R)) = soc(R)
and soc(R) ≤e Nil(R). To complete the proof, we prove that Nil(R) ≤e R (see
Remark 9 and [13, 17.3]). Since Nil(R) =

⋂
p ∈Min(R) p and |Min(R)| < ∞,

it suffices to show that p ≤e R for every p ∈ Min(R). To see this, suppose
I∩p = {0} for some non-zero ideal I of R. We next show that I∩Ann(I) = {0}.
Let 0 6= x ∈ I ∩Ann(I). Then xy = 0 for every y in I. This implies that x ∈ p

or y ∈ p, a contradiction. Hence I ∩Ann(I) = {0}. Also, soc(R) ⊆ Nil(R) ⊆ p

and I ∩ p = {0} imply that I is not a minimal ideal. Therefore, there exists
J ∈ I(R) such that J $ I. Thus J ∩ Ann(I) = {0}. Also, since Ann(J) ⊆ p,
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we conclude that I ∩ Ann(J) = {0}. Now, J ∩ Ann(I) = I ∩ Ann(J) = {0}
shows that I and J are not adjacent, a contradiction. Thus p ≤e R. �

Next, we study reduced rings whose annihilator ideal graphs are complete.

Theorem 11. Let R be a reduced ring. Then ΓAnn(R) is a complete graph if

and only if Ann(I) 6= Ann(J) for every distinct pair I, J ∈ I(R).

Proof. Suppose that ΓAnn(R) is a complete graph and Ann(I) = Ann(J), for
some I, J ∈ I(R). Then we have I ∩ Ann(J) 6= {0} or J ∩ Ann(I) 6= {0} and
hence I ∩ Ann(I) 6= {0} or J ∩ Ann(J) 6= {0}, which is a contradiction, as
R is reduced. To prove the converse, assume that I is an arbitrary vertex of
ΓAnn(R) and Ann(I) 6= Ann(K), for every K ∈ I(R) \ {I}. We show that I is
adjacent to every other vertex. Assume to the contrary, I is not adjacent to J ,
for some J ∈ I(R). Thus I ∩ Ann(J) = {0} and J ∩ Ann(I) = {0} and hence
IAnn(J) = JAnn(I) = {0}. Therefore, Ann(I) = Ann(J), a contradiction.
Since I is arbitrary, we deduce that ΓAnn(R) is complete. �

Theorem 12. Let R be a Noetherian reduced ring. Then ΓAnn(R) is a complete

graph if and only if R is a direct product of finitely many fields.

Proof. One side is clear. To prove the other side, suppose that ΓAnn(R) is a
complete graph. If R contains a regular element, say x, then it is easy to see that
Rx is not adjacent to Rx2 in ΓAnn(R), a contradiction. Thus depth(R) = 0 and
so it follows from [4, Proposition 1.2.1] that Ann(I) 6= {0} for every I ∈ I(R).
Let m ∈ Max(R). Then m ⊆ Z(R) =

⋃
p∈Min(R) p, by [8, Corollary 2.4]. It

follows from the prime avoidance theorem (see [11, Theorem 3.61]) that there
exists p ∈ Min(R) such that m = p and so R is Artinian, by [11, Corollary
8.45]. Since R is reduced, [11, Exercise 8.50] completes the proof. �

In the next proposition, we study the subgraph induced by prime ideals of
a ring R.

Proposition 13. Let R be a ring. Then the subgraph induced by prime ideals

of R is the join of a complete graph and a totally disconnected graph.

Proof. Put Λ := {p ∈ Spec(R) : Ann(p) 6= {0}} and Σ := {p ∈ Spec(R) :
Ann(p) = {0}}. Clearly, the subgraph induced by the vertex-set Σ is the totally
disconnected graphK |Σ|. We show that the subgraph induced by the vertex-set
Λ is complete. Assume that p1, p2 ∈ Λ are distinct. As p1Ann(p1) = {0}, we
have either p1 ⊆ p2 or Ann(p1) ⊆ p2. If Ann(p1) ⊆ p2, then p1 is adjacent to
p2. Otherwise, we may assume that p1 ⊆ p2. Since p2Ann(p2) = {0}, one can
easily see that Ann(p2) ⊆ p1 and so p1 is adjacent to p2. Thus the subgraph
induced by the vertex-set Λ is complete. To complete the proof, we show that
every vertex of Λ is adjacent to all vertices of Σ. Let p1 ∈ Λ and p2 ∈ Σ. If
Ann(p1)∩p2 = {0}, then Ann(p1)p2 = {0} and this contradicts the assumption
Ann(p2) = {0}. Hence Ann(p1) ∩ p2 6= {0} and so p1 is adjacent to p2. So,
ΓAnn(R)[Spec(R)] = K|Σ| ∨K|Λ|. �
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4. Clique number and coloring of an annihilator ideal graph

In this section, we investigate the clique and chromatic numbers of ΓAnn(R).
By Part (i) of Theorem 10, if R is an Artinian ring, then ΓAnn(R) is complete.
So, we study the clique and chromatic numbers of ΓAnn(R), when R is non-
Artinian. First, we determine the clique number and the chromatic number
of ΓAnn(R), where R is a non-Artinian ring and is a direct sum of finitely
many integral domains. Also, it is proved that if R is a Noetherian ring and
ω(ΓAnn(R)) = 2, then R is a Gorenstein ring.

Theorem 14. Let R be a non-Artinian ring such that R ∼= D1 ⊕ · · · ⊕ Dn,

where Di is an integral domain, for every 1 ≤ i ≤ n. Then ω(ΓAnn(R)) =
χ(ΓAnn(R)) = 2n − 1.

Proof. Let I, J ∈ I(R) and ∼ be an equivalence relation on I(R). So there
exist ideals Ii and Ji of Di, such that I = I1 × · · · × In and J = J1 × · · · × Jn,
for all 1 ≤ i ≤ n. We define I ∼ J if, “Ii = {0} if and only if Ji = {0}”,
for all 1 ≤ i ≤ n. We denote by [X ] = {Y ∈ I(R) |Y ∼ X} the equivalence
class of X . Let X = I1 × · · · × In be an arbitrary ideal of I(R). Then for
every Ii, we have Ii = {0} or Ii 6= {0}, for every 1 ≤ i ≤ n. Hence every Ii
has two choices. Therefore, the number of all this selections for X is 2n − 1.
This implies that the number of equivalence classes is 2n − 1. Now, suppose
that [X ] and [Y ] are two distinct arbitrary equivalence classes. We show that
there is no adjacency between two elements of [X ] (in ΓAnn(R)) and each
element of [X ] is adjacent to each element of [Y ]. To see this, let I and J
be two elements of [X ] and K be an element of [Y ]. So there exist ideals
Ii, Ji and Ki of Di, such that I = I1 × · · · × In, J = J1 × · · · × Jn and
K = K1 × · · · ×Kn. Thus Ii = {0} if and only if Ji = {0}, for all 1 ≤ i ≤ n.
Since Di is an integral domain, I is not adjacent to J . On the other hand,
I ≁ K, so Ii = {0} and Ki 6= {0} for some 1 ≤ i ≤ n. Hence for each
0 6= a ∈ Ki we have 0 × · · · × 0 6= 0 × · · · × 0 × a × 0 × · · · × 0 ∈ K. Clearly,
0×· · ·× 0×a× 0×· · ·× 0I = {0}. So I is adjacent to K. Indeed, ΓAnn(R) is a
complete (2n−1)-partite graph. Thus ω(ΓAnn(R)) = χ(ΓAnn(R)) = 2n−1. �

Corollary 15. Let R be a ring such that R ⊆ D1⊕· · ·⊕Dn and R∩Di 6= {0},
for all 1 ≤ i ≤ n, where Di is an integral domain. Then ω(ΓAnn(R)) =
χ(ΓAnn(R)) = 2n − 1.

Example 16. Let R ∼= D1 ⊕D2, where D1 and D2 are integral domains. We
put A := {I | I is an ideal of R and I = I1 × (0), I1 6= (0)}, B := {I | I is an
ideal of R and I = (0) × I2, I2 6= (0)} and C := {I | I is an ideal of R and
I = I1 × I2, I 6= R, I1 6= (0), I2 6= (0)}. Clearly, I(R) = A ∪ B ∪ C, and
A ∩ B = A ∩ C = B ∩ C = ∅. Now, let I, J ∈ A (∈ B or ∈ C) and K ∈ B
or K ∈ C (∈ A). Then, it is easy to check that there is no adjacency between
two vertices I and J , but I is adjacent to K. This implies that ΓAnn(R) is a
complete 3-partite graph and ω(ΓAnn(R)) = χ(ΓAnn(R)) = 3 (see Figure 1).



THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING 425

✓

✒

✏

✑

✓

✒

✏

✑

✓

✒

✏

✑
r✑✑

✑
✑
✑✑

✏✏✏✏✏✏

r
r

r
r

r

C

BA

...
...

...

◗
◗

◗
◗

◗◗

❅
❅

❅
❅

❅❅

✑
✑
✑
✑
✑✑

�
�
�
�
��

PPPPPP

◗
◗

◗
◗

◗◗
❤❤❤❤❤❤❤❤❤❤❤✭✭✭✭✭✭✭✭✭✭✭

Figure 1. A part of ΓAnn(D1 ⊕D2).

Let R be a Noetherian local ring. Then R is said to be Cohen-Macaulay

ring if depht(R) = dim(R). In general, if R is a Noetherian ring, then R is a
Cohen-Macaulay ring if Rm is a Cohen-Macaulay ring, for all maximal ideals
m, where Rm is the localization of R at m. Also, a Noetherian local ring R is
called Gorenstein if R is Cohen-Macaulay and dimR/m(soc(R)) = 1, where m

is the unique maximal ideal of R. In general, if R is a Noetherian ring, then
R is a Gorenstein ring if Rm is a Gorenstein ring, for all maximal ideals m. In
the next theorem, we study the special case when R is a Gorenstein ring (see
[4]).

Theorem 17. Let R be a Noetherian ring. If ω(ΓAnn(R)) = 2, then R is a

Gorenstein ring.

Proof. If R is an Artinian ring, then by Part (i) of Theorem 10, ΓAnn(R) is
a complete graph. Since ω(ΓAnn(R)) = 2, we have |I(R)| = 2. Now, if R
is a local ring, then clearly R is a Gorenstein ring (see [4, Exercise 3.2.15]).
Also, if R is a non-local ring, then by [11, Exercise 8.50], R ∼= R1 × R2,
where Ri is a field for i = 1, 2. This implies that R is a Gorenstein ring.
Hence, we may suppose that R is not Artinian and we try to find a contra-
diction. If R is a reduced ring, then by [8, Corollary 2.4], we have Z(R) =⋃

p∈Min(R) p. Let Min(R) = {p1, . . . , pk}. In this case if |Min(R)| ≥ 3, then

p2p3 · · · pk − p1p3 · · · pk − p2p3 · · · pk−1 − p2p3 · · · pk is a triangle in ΓAnn(R)
(see [11, Lemma 3.55]), which is a contradiction. Now if Min(R) = {p1, p2},
then by [11, Theorem 3.61], one can easily see that either R is an Artinian
ring or p1 − Rx − p2 − p1 is a triangle in ΓAnn(R), for some regular element
x in R, a contradiction. Hence we may assume that R is not reduced. We
claim that if depth(R) = 0, then ω(ΓAnn(R)) = ∞. Since R is Noetherian and
depth(R) = 0, it follows from [4, Proposition 1.2.1] that Ann(I) 6= {0}, for every
I ∈ I(R). If the number of essential ideals of R is finite, then [13, 21.1] implies
that soc(R) ≤e R and hence R is Artinian, by Remark 9, which is impossible.
Thus R has infinitely many essential ideals. Since Ann(I) 6= {0}, for every
I ∈ I(R), we conclude that ω(ΓAnn(R)) = ∞ and so the claim is proved. Thus
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depth(R) 6= 0. If for all ideals I ⊆ Z(R), I = Ann(I), then Z(R) = Nil(R).
Now we show that Z(R) is not a minimal ideal of R. Suppose to the contrary,
Z(R) is a minimal ideal of R. Then Z(R) is the unique minimal ideal of R and
soc(R) = Z(R). Thus by Remark 9, R is an Artinian ring, which is not true.
Since Z(R) is not a minimal ideal of R, Z(R)− I −Rx−Z(R) is a triangle in
ΓAnn(R), where x is a regular element in R and I ⊆ Z(R) is a non-zero ideal of
R, a contradiction. Now suppose that there exists I ∈ I(R) such that I ⊆ Z(R)
and I 6= Ann(I). If x is a regular element of R, then I −Ann(I)−Rx− I is a
triangle in ΓAnn(R), which is impossible. This completes the proof. �

The following corollary is an immediate consequence of Theorem 17.

Corollary 18. Let R be a Noetherian ring and ΓAnn(R) is a forest. Then we

have the following statements:
(i) R is an integral domain.

(ii) R is a Gorenstein ring.

In the next theorem, we study the special case that ΓAnn(R) is a star graph.

Theorem 19. Let R be a ring such that depth(R) 6= 0. Then the following

statements are equivalent:
(i) Z(R) 6= {0} is a minimal ideal of R.

(ii) ΓAnn(R) is a star graph.

Proof. First suppose that Z(R) 6= {0} is a minimal ideal of R. Thus we have
Ann(Z(R)) 6= {0}. Let I, J ∈ I(R) \ {Z(R)}. Since depth(R) 6= 0, I and J
contain regular elements. Hence I is not adjacent to J , and they are adjacent
to Z(R). Therefore, ΓAnn(R) is a star graph.

Conversely, suppose that ΓAnn(R) is a star graph. Thus by Lemma 1,
Z(R) 6= {0}. Now, let x be a regular element of R and y 6= 0 be an arbi-
trary element in Z(R). Therefore, there exists 0 6= z ∈ Z(R) such that zy = 0.
So, it is easy to see that Rx − Ry − Rz − Rx is a triangle in ΓAnn(R) (Rx is
an essential ideal), which is a contradiction. Also, Rx 6= Ry and Rx 6= Rz.
Thus Rz = Ry and so there exists an element r ∈ R such that y = rz. Hence
y2 = rzy = 0. This implies that Z(R) = Nil(R). Next we show that Nil(R)
is a minimal ideal of R. To see this, we show that Nil(R) = Ry for every
y ∈ Nil(R). Let Nil(R) = Ry + Rz + · · · . If yz = 0, since Rx is essential, we
deduce that Ry = Rz and if yz 6= 0, then yz ∈ Ry and yzRz = {0}, so similarly
Ry = Rz. Therefore, Nil(R) = Ry for every y ∈ Nil(R), as desired. �

In the above theorem, R can not be a Noetherian ring. Because if R is
Noetherian, then R has exactly one minimal ideal. Thus soc(R) ≤e R and
hence by Remark 9, R is an Artinian ring. Thus depth(R) = 0, which is
impossible.

In the last result of this section, we show that the number of annihilator
ideals of R is at most 2|Min(R)|.
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Proposition 20. Let R be a reduced ring and ω(ΓAnn(R)) < ∞. Then the

number of annihilator ideals of R is finite.

Proof. Let {xi}i∈N be an infinite clique in Γ(R). Then {Rxi}i∈N is an infinite
clique in ΓAnn(R), which is impossible. Hence ω(Γ(R)) < ∞. Now by [3,
Theorems 3.7 and 3.8], we may assume that Min(R) = {p1, . . . , pk}. Suppose
that I ∈ I(R). Then since Ann(I)Ann(Ann(I)) = {0}, we have either Ann(I) ⊆
pi or Ann(Ann(I)) ⊆ pi, for every 1 ≤ i ≤ k. Now, we consider two following
sets:

∆ := {i : 1 ≤ i ≤ k,Ann(I) ⊆ pi}, Ω := {i : 1 ≤ i ≤ k,Ann(Ann(I)) ⊆ pi}.

Clearly ∆∪Ω = {1, 2, . . . , k}. Now, since R is reduced and Ann(Ann(Ann(I)))
= Ann(I), we have Ann(I) ⊆

⋂
i∈∆ pi ⊆ Ann(

⋂
i∈Ω pi) ⊆ Ann(I). Thus the

number of annihilator ideals of R is finite. �

5. Some finiteness conditions in annihilator ideal graphs

In this section, we study some conditions under which ΓAnn(R) is a finite
graph. For instance, we show that if a minimal ideal of R has a finite degree in
ΓAnn(R), then ΓAnn(R) is finite. Also, it is proved that if R is a reduced ring
and |Min(R)| < ∞, then α(ΓAnn(R)) < ∞ if and only if R is a direct product
of finitely many fields.

Proposition 21. If a minimal ideal of R has a finite degree in ΓAnn(R), then
ΓAnn(R) is a finite graph.

Proof. Suppose that I is a minimal ideal of R such that deg(I) < ∞. Also, let
J be an ideal of R. Then either I ⊆ J or I ∩ J = {0}. Put

Λ := {J : J is a non-trivial ideal of R and I ∩ J = {0}}

and

Σ := {J : J is a non-trivial ideal of R and I $ J}.

We show that Λ∪Σ is finite. Clearly, I is adjacent to all vertices of Λ and since
deg(I) < ∞, Λ is finite. Now if I2 = {0}, then I is adjacent to all vertices of
Σ, and since deg(I) < ∞, Σ is finite. Otherwise, if I2 = I, then by Brauer’s
Lemma (see [9, 10.22]), R = Re ⊕ R(1 − e), where e is a idempotent element
of R. Thus we may assume that R ∼= F ×S, where F is a field and S is a ring.
If I = F × {0}, then I is adjacent to all vertices of the form F × Y , where Y
is a non-trivial ideal in S. Since deg(I) < ∞, Σ is finite. Finally, suppose that
the minimal ideal I is of the form I = 0 × J , where J is a minimal ideal of S.
Let L = F ×K be a vertex of ΓAnn(R), where K is an ideal of S. Obviously,
Ann(I) ∩ L 6= {0}. Since deg(I) < ∞, we deduce that S has finitely many
ideals. Therefore, the number of ideals of R is finite, as desired. �

Theorem 22. ∆(ΓAnn(R)) < ∞ if and only if either R is an integral domain

or ΓAnn(R) is finite.
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Proof. Assume that R is not an integral domain and deg(v) < ∞ for all v ∈
V (ΓAnn(R)). Let x ∈ Z(R) \ {0} and set I := Rx and J := Ann(x). If I
is not Artinian as an R-module, then there exists a non-stationary chain of
submodules of I, say I % I1 % I2 % · · · . Thus deg(J) = ∞, which is a
contradiction. Hence I is an Artinian R-module. Similarly, J is an Artinian
R-module. Since I ∼=R R/J (R-module isomorphism), we conclude that R/J
is an Artinian R-module. By [11, Corollary 7.19], R is an Artinian ring. Hence
Part (i) of Theorem 10 implies that the number of ideals of R is finite. The
converse is clear. �

Theorem 23. Let R be a Cohen-Macaulay ring. Then α(ΓAnn(R)) < ∞ if

and only if R is an Artinian ring.

Proof. Suppose that α(ΓAnn(R)) < ∞. We show that depth(R) = 0. Assume
to the contrary, depth(R) 6= 0. If x is a regular element in R, then the sub-
graph induced by the vertex set {Rxi}i∈N is totally disconnected and hence
α(ΓAnn(R)) = ∞, which is a contradiction. Thus depth(R) = 0 and so R is an
Artinian ring. Conversely, assume that R is an Artinian ring. Then by Part
(i) of Theorem 10, ΓAnn(R) is complete and hence α(ΓAnn(R)) = 1. �

We close this paper with the following result.

Theorem 24. Let R be a reduced ring and |Min(R)| < ∞. Then α(ΓAnn(R)) <
∞ if and only if R is a direct product of finitely many fields.

Proof. Suppose that x is a regular element of R. Then the subgraph induced
by the vertex set {Rxi}i∈N is totally disconnected and hence α(ΓAnn(R)) =
∞, which is a contradiction. Therefore, every non-unit element of R is zero-
divisor. If m is a maximal ideal of R, then m ⊆ Z(R) =

⋃
p ∈Min(R) p, by [8,

Corollary 2.4]. Thus the prime avoidance theorem (see [11, Theorem 3.61])
implies that there exists p ∈ Min(R) such that m = p. Hence we may assume
that Max(R) = {m1, . . . ,mn}. We show that soc(R) = R. In other word,
it is proved that there is no non-trivial essential ideal in R (see [13, 21.1]).
Assume to the contrary, I is a non-trivial essential ideal of R. Then there
exists m ∈ Max(R) such that I ⊆ m. Without loss of generality, suppose that
I ⊆ m1. By [11, Lemma 3.55], we have

⋂n
i=2 mi 6= {0}. Since R is a reduced

ring, I ∩m2 ∩ · · · ∩mn = {0}, which is a contradiction. Therefore, soc(R) = R
(And so indeed R is semi-simple). This implies that R is a finite direct product
of fields (see [13, 20.7]). The converse follows from Part (i) of Theorem 10. �

Remark 25. By a similar method to that of Theorem 24, it is easy to see that
if R is a Noetherian ring and α(ΓAnn(R)) < ∞, then the number of maximal
ideals of R is finite.
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