• Title/Summary/Keyword: Nano-Electronics

Search Result 746, Processing Time 0.033 seconds

Extraction of Gate-Length Dependent Maximum Oscillation Frequency of Nano MOSFET (Nano MOSFET의 게이트길이 종속 최대진동주파수 추출)

  • Kim, Joung- Hyck;Lee, Young-Taek;Choi, Mun-Sung;Lee, Seong-Hearn
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.817-820
    • /
    • 2005
  • The gate-length dependence of maximun oscillation frequency $f_{MAX}$ is modeled by using scaling equations of equivalent-circuit parameters extracted from measured S-parameters of Nano-scale MOSFETs. The accuracy of the modeled $f_{MAX}$ is verified by observing good agreements with measured ones. It is observed that the $f_{MAX}$ initially increases with decreasing $L_g$ and then $f_{MAX}$ becomes saturated from $L_g$ less than 65nm.

  • PDF

Mutually-Actuated-Nano-Electromechanical (MA-NEM) Memory Switches for Scalability Improvement

  • Lee, Ho Moon;Choi, Woo Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.199-203
    • /
    • 2017
  • Mutually-actuated-nano-electromechanical (MA-NEM) memory switches are proposed for scalability improvement. While conventional NEM memory switches have fixed electrode lines, the proposed MA-NEM memory switches have mutually-actuated cantilever-like electrode lines. Thus, MA-NEM memory switches show smaller deformations of beams in switching. This unique feature of MA-NEM memory switches allows aggressive reduction of the beam length while maintaining nonvolatile property. Also, the scalability of MA-NEM memory switches is confirmed by using finite-element (FE) simulations. MA-NEM memory switches can be promising solutions for reconfigurable logic (RL) circuits.

Development of 25kW Bi-directional Converter using SiC MOSFET for DC Nano-grid (SiC MOSFET을 이용한 DC Nano-grid용 25kW급 양방향 컨버터 개발)

  • Kim, Yeonwoo;Han, Byeonggill;Kim, Minjae;Choi, Sewan;Yang, Daeki;Kim, Minkook;Oh, Seongjin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.44-45
    • /
    • 2016
  • 본 논문에서는 DC Nano-grid를 위한 25kW급 고효율 양방향 컨버터를 개발하였다. 제안하는 양방향 컨버터는 넓은 입력전압 범위를 만족하기 위하여 Cascade 부스트-벅 컨버터의 구조로 하였으며 상용화된 SiC MosFET기반 3레그 IPM을 최적으로 사용하기 위해 2상 인터리빙 부스트 컨버터와 단상 벅 컨버터로 하였다. 또한 승 강압 모드에 따라 스위칭하는 스위치 개수를 감소시켜 스위칭 손실을 최소화 하였다. 25kW 시작품을 통해 14kW에서 효율 98.9%를 달성하였다.

  • PDF

Quantitative Evaluation of Non-Carbon Content in the Single Wall Carbon Nanotube Soot using Thermogravimetric Analysis

  • Han, J.H.;An, K.H.;Lee, N.S.;Goak, J.C.;Jeong, M.S.;Choi, Y.C.;Oh, K.H.;Kim, K.K.;Lee, Y.H.
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.5-8
    • /
    • 2009
  • We measured the non-carbon content of single-walled carbon nanotubes (SWCNTs) in SWCNT soot using thermogravimetric analysis. The weight increased percentage by the oxidation of metal in the raw soot is well obtained by TGA graph which was confirmed with ICP-AES, XRD, and XPS. This work will be very useful for the purity precise evaluation of SWCNT with UN-vis-NIR spectroscopy.

Improvement of Thermal Stability of Ni-Silicide Using Vacuum Annealing on Boron Cluster Implanted Ultra Shallow Source/Drain for Nano-Scale CMOSFETs

  • Shin, Hong-Sik;Oh, Se-Kyung;Kang, Min-Ho;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.260-264
    • /
    • 2010
  • In this paper, Ni silicide is formed on boron cluster ($B_{18}H_{22}$) implanted source/drains for shallow junctions of nano-scale CMOSFETs and its thermal stability is improved, using vacuum annealing. Although Ni silicide on $B_{18}H_{22}$ implanted Si substrate exhibited greater sheet resistance than on the $BF_2$ implanted one, its thermal stability was greatly improved using vacuum annealing. Moreover, the boron depth profile, using vacuum post-silicidation annealing, showed a shallower junction than that using $N_2$ annealing.

A "Thru-Short-Open" De-embedding Method for Accurate On-Wafer RF Measurements of Nano-Scale MOSFETs

  • Kim, Ju-Young;Choi, Min-Kwon;Lee, Seong-Hearn
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • A new on-wafer de-embedding method using thru, short and open patterns sequentially is proposed to eliminate the errors of conventional methods. This "thru-short-open" method is based on the removal of the coupling admittance between input and output interconnect dangling legs. The increase of the de-embedding effect of the lossy coupling capacitance on the cutoff frequency in MOSFETs is observed as the gate length is scaled down to 45 nm. This method will be very useful for accurate RF measurements of nano-scale MOSFETs.

Buckling characteristics of multiwalled carbon nanotubes under external pressure

  • Sato, Motohiro;Shima, Hiroyuki
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.209-222
    • /
    • 2009
  • This article describes recent work on mechanics of carbon nanotubes, one of the most fundamental and amazing man-made nanostructures. The noteworthy point is that "nano"-scale mechanics of carbon nanotubes can be well described by the continuum elastic theories for "macro"-scale thin shells. This provides an efficient means to elucidate mechanical deformation effects of carbon nanotubes on their physical and chemical properties, which is significant to develop new-generation nanomaterials based on nanotubes and their composites. Potential applications of the mechanical deformation of nanotubes in nano-electronics and nano-biology are also commented. In addition, theoretical investigations regarding external pressure buckling is carried out here and we have numerically confirmed that larger N (the number of layers) and a smaller D (the innermost diameter) make "corrugation modes" with a larger mode-index k be energetically favored.

Small Molecular Organic Nonvolatile Memory Cells Fabricated with in Situ O2 Plasma Oxidation

  • Seo, Sung-Ho;Nam, Woo-Sik;Park, Jea-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • We developed small molecular organic nonvolatile $4F^2$ memory cells using metal layer evaporation followed by $O_2$ plasma oxidation. Our memory cells sandwich an upper ${\alpha}$-NPD layer, Al nanocrystals surrounded by $Al_2O_3$, and a bottom ${\alpha}$-NPD layer between top and bottom electrodes. Their nonvolatile memory characteristics are excellent: the $V_{th},\;V_p$ (program), $V_e$ (erase), memory margin ($I_{on}/I_{off}$), data retention time, and erase and program endurance were 2.6 V, 5.3 V, 8.5 V, ${\approx}1.5{\times}10^2,\;1{\times}10^5s$, and $1{\times}10^3$ cycles, respectively. They also demonstrated symmetrical current versus voltage characteristics and a reversible erase and program process, indicating potential for terabit-level nonvolatile memory.

Biosensor Implementation Using an Integrated Mach-Zehnder Interferometer (마흐젠더 간섭계를 이용한 바이오센서의 구현)

  • Choo, Sung-Joong;Lee, Byung-Cheol;Kim, Jin-Sik;Park, Jung-Ho;Shin, Hyun-Joon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.497-498
    • /
    • 2008
  • An integrated Mach-Zehnder interferometer for biosensor applications was designed and fabricated. To implement the optimum biosensor a rib waveguide must have single mode operation and high sensitivity. The proposed Mach-Zehnder interferometer was fabricated based on these design rules, and its feasibility is confirmed by ethanol detection experiment in the real-time measurement system operating at 632.8 nm.

  • PDF

Advanced Flow Visualization Technologies and Blue Ocean Strategy (첨단 유동가시화 기법들과 Blue Ocean 전략)

  • Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.145-146
    • /
    • 2006
  • Recently, the next-generation advanced flow visualization techniques such as holographic PIV, dynamic PIV, echo-PIV, micro/nano-PIV, and X-ray PIV have been introduced. These advanced measurement techniques have a big potential as the core technology for analyzing outmost thermo-fluid flows in future. These would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is impossible for conventional measurement methods to observe most complicated nano- and bio-fluidic phenomena. In this presentation, the basic principle of these high-tech flow visualization techniques and their practical applications which cannot be resolved by conventional methods, such as blood flows in a micro-tube, in vivo analysis of micro-circulation, and flow around a living body will be introduced as a blue ocean strategy.

  • PDF