DOI QR코드

DOI QR Code

Small Molecular Organic Nonvolatile Memory Cells Fabricated with in Situ O2 Plasma Oxidation

  • Seo, Sung-Ho (Nano-SOI Process Laboratory, Hanyang University) ;
  • Nam, Woo-Sik (Nano-SOI Process Laboratory, Hanyang University) ;
  • Park, Jea-Gun (Nano-SOI Process Laboratory, Hanyang University)
  • Published : 2008.03.30

Abstract

We developed small molecular organic nonvolatile $4F^2$ memory cells using metal layer evaporation followed by $O_2$ plasma oxidation. Our memory cells sandwich an upper ${\alpha}$-NPD layer, Al nanocrystals surrounded by $Al_2O_3$, and a bottom ${\alpha}$-NPD layer between top and bottom electrodes. Their nonvolatile memory characteristics are excellent: the $V_{th},\;V_p$ (program), $V_e$ (erase), memory margin ($I_{on}/I_{off}$), data retention time, and erase and program endurance were 2.6 V, 5.3 V, 8.5 V, ${\approx}1.5{\times}10^2,\;1{\times}10^5s$, and $1{\times}10^3$ cycles, respectively. They also demonstrated symmetrical current versus voltage characteristics and a reversible erase and program process, indicating potential for terabit-level nonvolatile memory.

Keywords

References

  1. L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett. 80 (2002) 2997 https://doi.org/10.1063/1.1473234
  2. L. Ma, S. Pyo, J. Ouyang, Q. Xu, and Y. Yang, Appl. Phys. Lett. 82 (2003) 1419 https://doi.org/10.1063/1.1556555
  3. L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, Adv. Funct. Mater. 15 (2005) 1933 https://doi.org/10.1002/adfm.200500130
  4. J. He, L. Ma, J. Wu, and Y. Yang, J. Appl. Phys. 97 (2005) 064507 https://doi.org/10.1063/1.1866496
  5. S. Pyo, L. Ma, J. He, Q. Xu, and Y. Yang, J. Appl. Phys. 98 (2005) 54303 https://doi.org/10.1063/1.2033142
  6. L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, Appl. Phys. Lett. 84 (2004) 607 https://doi.org/10.1063/1.1643547
  7. S. H. Kang, T. Crisp, I. Kymissis, and V. Buloviae, Appl. Phys. Lett. 85 (2004) 4666 https://doi.org/10.1063/1.1819991
  8. J. Chen and D. Ma, Appl. Phys. Lett. 87 (2005) 023505 https://doi.org/10.1063/1.1992653
  9. J. G. Park, G. S Lee K. S. Chae, Y. J. Kim, and T. Miyata, J. Korean Phys. Soc. 48 (2006) 1
  10. J. Ouyang, C. Chu, C. Szmanda, L. Ma, and Y. Yang, Nat. Mater. 3 (2004) 918 https://doi.org/10.1038/nmat1269
  11. C. W. Chu, J. Ouyang, J. H. Tseng, and Y. Yang, Adv. Mater. 17 (2005) 1440 https://doi.org/10.1002/adma.200500225
  12. R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, Nat. Nanotechnol. 1 (2006) 72 https://doi.org/10.1038/nnano.2006.55
  13. B. O. Cho, T. Yasue, H. Yoon, M. S. Lee, I. ?S. Yeo, U. I. Chung, J. T. Moon, and B. I. Ryu, Electron Devices Meeting.2006 IEDM (2006)
  14. A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77 (2000) 139 https://doi.org/10.1063/1.126902
  15. Krzysztof Szot, Wolfgang Speier, Gustav Bihlmayer, and Rainer Waser, Nature Material 5 (2006) 312-320 https://doi.org/10.1038/nmat1614
  16. Chia-Hsun Tu, Yi-Sheng Lai, and Dim-Lee Kwong, Appl. Phys. Lett. 89 (2006) 062105 https://doi.org/10.1063/1.2335818
  17. Qidan Ling, Yan Song, Shi J. Ding, Chunxiang Zhu, Daniel S. H. Chan, Dim-Lee Kwong, En-Tang Kang, and Koon-Gee Neoh, Adv. Mater. 17 (2005)

Cited by

  1. Effect of interface-dependent crystalline boundary on sub-threshold characteristics in a solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistor vol.65, pp.3, 2014, https://doi.org/10.1051/epjap/2014130417