References
- Arias, I. and Arroyo, M. (2008), "Size-dependent nonlinear elastic scaling of multiwalled carbon nanotubes", Phys. Rev. Lett., 100, 085503. https://doi.org/10.1103/PhysRevLett.100.085503
- Arroyo, M. and Belytschko, T. (2003), "Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes", Phys. Rev. Lett. 91, 215505. https://doi.org/10.1103/PhysRevLett.91.215505
- Arroyo, M. and Arias, I. (2008), "Rippling and a phase-transforming mesoscopic model for multiwalled carbon nanotubes", J. Mech. Phys. Solids, 56, 1224-1244. https://doi.org/10.1016/j.jmps.2007.10.001
- Avouris, P., Hertel, T., Martel, R., Schmidt, T., Shea, H. R. and Walkup, R. E. (1999), "Carbon nanotubes: nanomechanics, manipulation, and electronic devices", Appl. Surface Sci. 141, 201-209. https://doi.org/10.1016/S0169-4332(98)00506-6
- Bal, S. and Samal, S. S. (2007), "Carbon nanotube reinforced polymer composites - A state of the art", Bull. Mater. Sci., 30, 379-386. https://doi.org/10.1007/s12034-007-0061-2
- Balakrishnan, R. and Dandoloff, R. (2008), "Effect of conformations on charge transport in a thin elastic tube", Nonlinearity, 21, 1-11. https://doi.org/10.1088/0951-7715/21/1/001
- Batra, R. C. and Sears, A. (2007), "Continuum models of multi-walled carbon nanotubes", Int. J. Solids. Struct. 44, 7577-7596. https://doi.org/10.1016/j.ijsolstr.2007.04.029
- Benedict, L. X., Chopra, N. G., Cohen, M. L., Zettl, A., Louie, S. G. and Crespi, V. H. (1998), "Microscopic determination of the interlayer binding energy in graphite", Chem. Phys. Lett. 286, 490-496. https://doi.org/10.1016/S0009-2614(97)01466-8
- Bernholc, J., Brabec, C., Nardelli, M. B. Maiti, A., Roland, C. and Yakobson, B. I. (1998), "Theory of growth and mechanical properties of nanotubes", Appl. Phys. A, 67, 39-46. https://doi.org/10.1007/s003390050735
- Bredeau, S., Peeterbroeck, S., Bonduel, D., Alexandre, M. and Dubois, P. (2008), "From carbon nanotube coatings to high-performance polymer nanocomposites", Polym. Int., 57, 547-553. https://doi.org/10.1002/pi.2375
- Chang, T. C. (2007), "Torsional behavior of chiral single-walled carbon nanotubes is loading direction dependant", Appl. Phys. Lett. 90, 201910. https://doi.org/10.1063/1.2739325
- Chesnokov, S. A., Nalimova, V. A., Rinzler, A. G., Smalley, R. E. and Fischer, J. E. (1999), "Mechanical energy storage in carbon nanotube springs", Phys. Rev. Lett. 82, 343-346. https://doi.org/10.1103/PhysRevLett.82.343
- Chopra, N. G., Benedict, L. X., Crespi, V. H., Cohen, M. L., Louie, S. G. and Zettl, A. (1995), "Fully collapsed carbon nanotubes", Nature, 377, 135-138. https://doi.org/10.1038/377135a0
- Christofilos, D., Arvanitidis, J., Kourouklis, G. A., Ves, S., Takenobu, T., Iwasa, Y. and Kataura, H. (2007), "Identification of inner and outer shells of double-wall carbon nanotubes using high-pressure Raman spectroscopy", Phys. Rev. B, 76, 113402. https://doi.org/10.1103/PhysRevB.76.113402
- Demczyk, B. G., Wang, Y. M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, O. (2002), "Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes", Mater. Sci. Eng. A, 334, 173-178. https://doi.org/10.1016/S0921-5093(01)01807-X
- Despres, J. F., Daguerre, E. and Lafdi, K. (1995), "Flexibility of graphene layers in carbon nanotubes", Carbon, 33, 87-89. https://doi.org/10.1016/0008-6223(95)91118-Q
- Elliott, J. A., Sandler, J. K. W., Windle, A. H., Young, R. J. and Shaffer, M. S. P. (2004), "Collapse of singlewall carbon nanotubes is diameter dependent", Phys. Rev. Lett. 92, 095501. https://doi.org/10.1103/PhysRevLett.92.095501
- Frackowiak, E. and Beguin, R. (2001), "Carbon materials for the electrochemical storage of energy in capacitors", Carbon, 39, 937-950. https://doi.org/10.1016/S0008-6223(00)00183-4
- Frackowiak, E. and Beguin, R. (2002), "Electrochemical storage of energy in carbon nanotubes and nanostructured carbons", Carbon, 40, 1775-1787. https://doi.org/10.1016/S0008-6223(02)00045-3
- Gadagkar, V., Maiti, P. K., Lansac, Y., Jagota, A. and Sood, A. K. (2006), "Collapse of double-walled carbon nanotubes bundles under hydrostatic pressure", Phys. Rev. B, 73, 085402. https://doi.org/10.1103/PhysRevB.73.085402
- Gao, G. H., Cagin, T. and Goddard, W. A. (1998), "Energetics, structure mechanical and vibrational properties of single-walled carbon nanotubes", Nanotechnology 9, 184-191. https://doi.org/10.1088/0957-4484/9/3/007
- Harris, P. J. F. (2004), "Carbon nanotube composites", Int. Mater. Rev., 49, 31-43. https://doi.org/10.1179/095066004225010505
- Hasegawa, M. and Nishidate, K. (2006), "Radial deformation and stability of single-wall carbon nanotubes under hydrostatic pressure", Phys. Rev. B, 74, 115401. https://doi.org/10.1103/PhysRevB.74.115401
- Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic Properties of C and BxCyNz composite nanotubes", Phys. Rev. Lett., 80, 4502-4505. https://doi.org/10.1103/PhysRevLett.80.4502
- Hertel, T., Walkup, R. E. and Avouris, P. (1998), "Deformation of carbon nanotubes by surface van der Waals forces", Phys. Rev. B 58, 13870-13873. https://doi.org/10.1103/PhysRevB.58.13870
- Iijima,S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Iijima, S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys. 104, 2089-2092. https://doi.org/10.1063/1.470966
- Jensen, K., Mickelson, W., Kis, A. and Zettl, A. (2007), "Buckling and kinking force measurements on individual multiwalled carbon nanotubes", Phys. Rev. B, 76, 195436. https://doi.org/10.1103/PhysRevB.76.195436
- Khosravian, N. and Rafii-Tabar, H. (2007), "Computational modelling of the flow of viscous fluids in carbon nanotubes", J. Phys. D 40, 7046-7052. https://doi.org/10.1088/0022-3727/40/22/027
- Khosravian, N. and Rafii-Tabar, H. (2008), "Computational modelling of a non-viscous fluid flow in a multiwalled carbon nanotube modelled as a Timoshenko beam", Nanotechnology, 19, 275703. https://doi.org/10.1088/0957-4484/19/27/275703
- Kowalczyk, P., Holyst, R., Terrones, M. and Terrones, H. (2007), "Hydrogen storage in nanoporous carbon materials: myth and facts", Phys. Chem. Chem. Phys., 9, 1786-1792. https://doi.org/10.1039/b618747a
- Li, C. and Chou, T. W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct. 40, 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
- Li, X. F., Wang, B. L. and Mai, Y. W. (2008), "Effects of a surrounding elastic medium on flexural waves propagating in carbon nanotubes via nonlocal elasticity", J. Appl. Phys. 103, 074309. https://doi.org/10.1063/1.2903444
- Liu, T., Phang, I., Shen, L., Chow, S. and Zhang, W. (2004), "Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites", Macromolecules, 37, 7214. https://doi.org/10.1021/ma049132t
- Lopez, M. J., Rubio, A., Alonso, J. A., Qin, L. C. and Iijima, S. (2001), "Novelpolygonized single-wall carbon nanotube bundles", Phys. Rev. Lett., 86, 3056-3059. https://doi.org/10.1103/PhysRevLett.86.3056
- Lordi, V. and Yao, N. (1998), "Radial compression and controlled cutting of carbon nanotubes", J. Chem. Phys. 109, 2509-2512. https://doi.org/10.1063/1.476822
- Lu, J. P. (1997), "Elastic properties of carbon nanotubes and nanoropes", Phys. Rev. Lett., 79, 1297-1300. https://doi.org/10.1103/PhysRevLett.79.1297
- Majumder, M., Chopra, N., Andrews, R. and Hinds, B. J. (2005), "Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes", Nature, 438, 44-44. https://doi.org/10.1038/438044a
- Nardelli, M. B., Yakobson, B. I. and Bernholc, J. (1998), "Mechanism of strain release in carbon nanotubes", Phys. Rev. B, 57, 4277-4280. https://doi.org/10.1103/PhysRevB.57.R4277
- Natsuki, T. and Endo, M. (2004), "Stress simulation of carbon nanotubes in tension and compression", Carbon, 42, 2147-2151. https://doi.org/10.1016/j.carbon.2004.04.022
- Natsuki, T., Tantrakarn, K. and Endo, M. (2004a), "Effects of carbon nanotube structures on mechanical properties", Appl. Phys. A, 79, 117-124. https://doi.org/10.1007/s00339-003-2492-y
- Natsuki, T., Tantrakarn, K. and Endo, M. (2004b), "Prediction of elastic properties for single-walled carbon nanotubes", Carbon, 42, 39-45. https://doi.org/10.1016/j.carbon.2003.09.011
- Nishio, T., Miyato, Y., Kobayashi, K., Matsushige, K. and Yamada, H. (2008), "Piezoresistive properties of carbon nanotubes under radial force investigated by atomic force microscopy", Appl. Phys. Lett. 92, 063117. https://doi.org/10.1063/1.2857480
- Noy, A., Park, H. G., Fornasiero, F., Holt, J. K., Grigoropoulos, C. P. and Bakajin, O. (2007), "Nanofluidics in carbon nanotubes", Nano Today, 2, 22-29.
- Ono, S. and Shima, H. (2009), "Tuning the electrical resistivity of semiconductor thin films by nanoscale corrugation", Phys. Rev. B, 79, 235407. https://doi.org/10.1103/PhysRevB.79.235407
- Onoe, J., Ito, T., Shin-ishi, K., Ohno, K., Noguchi, Y. and Ueda, S. (2007), "Valence electronic structure of crosslinked C-60 polymers: In situ high-resolution photoelectron spectroscopic and density-functional studies", Phys. Rev. B, 75, 233410. https://doi.org/10.1103/PhysRevB.75.233410
- Overney, G., Zhang, W. and Tomanek, D. (1993), "Structural rigidity and low-frequency vibrational-modes of long carbon tubeles", Z. Phys. D, 27, 93-96. https://doi.org/10.1007/BF01436769
- Peters, M. J., McNeil, L. E., Lu, J. P. and Kahn, D. (2000), "Structural phase transition in carbon nanotube bundles under pressure", Phys. Rev. B, 61, 5939-5944. https://doi.org/10.1103/PhysRevB.61.5939
- Poncharal, P., Wang, Z. L., Ugarte, D. and de Heer W. A. (1999), "Electrostatic deflections and electromechanical resonances of carbon nanotubes", Science, 283, 1513-1516. https://doi.org/10.1126/science.283.5407.1513
- Qian, D., Liu, W. K., Subramoney, S. and Ruoff, R. S. (2003), "Effect of interlayer potential on mechanical deformation of multiwalled carbon nanotubes", J. Nanosci. Nanotechnol, 3, 185-191. https://doi.org/10.1166/jnn.2003.199
- Reich, S., Thomsen, C. and Ordejon, P. (2002), "Elastic properties of carbon nanotubes under hydrostatic pressure", Phys. Rev. B, 65, 153407. https://doi.org/10.1103/PhysRevB.65.153407
- Reich, S., Thomsen, C. and Ordejon, P. (2003), "Elastic properties and pressure-induced phase transitions of single-walled carbon nanotubes", Phys. Stat. Solid. B. 235, 354-359. https://doi.org/10.1002/pssb.200301621
- Rols, S., Gontcharenko, I. N., Almairac, R., Sauvajol, J. L. and Mirebeau, I. (2001), "Polygonization of singlewall carbon nanotube bundles under high pressure", Phys. Rev. B, 64, 153401. https://doi.org/10.1103/PhysRevB.64.153401
- Ruoff, R. S. and Lorents, D. C. (1995), "Mechanical and thermal-properties of carbon nanotubes", Carbon, 33(7), 925-930. https://doi.org/10.1016/0008-6223(95)00021-5
- Ruoff, R. S., Tersoff, J., Lorents, D. C., Subramoney, S. and Chan, B. (1993), "Radial deformation of carbon nanotubes by Van-der-Waals forces", Nature, 364, 514-516. https://doi.org/10.1038/364514a0
- Sharma, S. M., Karmakar, S., Sikka, S. K., Teredesai, P. V., Sood, A. K., Govindaraj, A. and Rao, C. N. R. (2001), "Pressure-induced phase transformation and structural resilience of single-wall carbon nanotube bundles", Phys. Rev. B, 63, 205417. https://doi.org/10.1103/PhysRevB.63.205417
- She, W., Jiang, B., Han, B. S. and Xie, S. S. (2000), "Investigation of the radial compression of carbon nanotubes with a scanning probe microscope", Phys. Rev. Lett., 84, 3634-3637. https://doi.org/10.1103/PhysRevLett.84.3634
- Shima, H. and Sato, M. (2008), "Multiple radial corrugations in multiwalled carbon nanotubes under pressure", Nanotechnology, 19, 495705. https://doi.org/10.1088/0957-4484/19/49/495705
- Shima, H. and Sato, M. (2009), "Pressure-induced structural transitions in multi-walled carbon nanotubes", Physica Status Solidi (a) , in press; arXiv:0905.4145.
- Shima, H., Yoshioka, H. and Onoe, J. (2009), "Geometry-driven shift in the Tomonaga-Luttinger exponent of deformed cylinders", Phys. Rev. B, 79, 201401. https://doi.org/10.1103/PhysRevB.79.201401
- Sun, C. and Liu, K. (2008), "Combined torsional buckling of multi-walled carbon nanotubes coupling with axial loading and radial pressures", Int. J. Solids. Struct. 45, 2128-2139. https://doi.org/10.1016/j.ijsolstr.2007.11.009
- Taira, H. and Shima, H. (2007), "Curvature effects on surface electron states in ballistic nanostructures", Surface Science, 601, 5270-5275. https://doi.org/10.1016/j.susc.2007.04.220
- Taira, H. and Shima, H. "Torsion-induced persistent current in a twisted quantum ring", submitted; arXiv:0904.3149. https://doi.org/10.1088/0953-8984/22/7/075301
- Tang, D. S., Bao, Z. X., Wang, L. J., Chen, L. C., Sun, L. F., Liu, Z. Q., Zhou, W. Y. and Xie, S. S. (2000), "The electrical behavior of carbon nanotubes under high pressure", J. Phys. Chem. Solids, 61, 1175-1178. https://doi.org/10.1016/S0022-3697(99)00381-9
- Tang, J., Qin, L. C., Sasaki, T., Yudasaka, M., Matsushita, A. and Iijima, S. (2000), "Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure", Phys. Rev. Lett. 85, 1887-1889. https://doi.org/10.1103/PhysRevLett.85.1887
- Tang, J., Qin, L. C., Sasaki, T., Yudasaka, M., Matsushita, A. and Iijima, S. (2002), "Revealing properties of single-walled carbon nanotubes under high pressure", J. Phys. Condens. Matt. 14, 10575-10578. https://doi.org/10.1088/0953-8984/14/44/335
- Tangney, P., Capaz, R. B., Spataru, C. D., Cohen, M. L. and Louie, S. G. (2005), "Structural transformations of carbon nanotubes under hydrostatic pressure", Nano Lett., 5, 2268-2273. https://doi.org/10.1021/nl051637p
- Tersoff, J. and Ruoff, R. S. (1994), "Structural properties of a carbon-nanotube crystal", Phys. Rev. Lett., 73, 676-679. https://doi.org/10.1103/PhysRevLett.73.676
- Toda, Y., Ryuzaki, S. and Onoe, J. (2008), "Femtosecond carrier dynamics in electron-beam-irradiated C-60 film", Appl. Phys. Lett. 92, 094102. https://doi.org/10.1063/1.2838347
- Treacy, M. M. J., Ebbesen, T. W. and Gibson, J. M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381, 678-680. https://doi.org/10.1038/381678a0
- Wang, C. Y., Ru, C. Q. and Mioduchowski, A. (2003), "Elastic buckling of multiwall carbon nanotubes under high pressure", J. Nanosci. Nanotechnol., 3, 199-208. https://doi.org/10.1166/jnn.2003.185
- Wang, C. Y., Zhang, C. M., Wang, C. M. and Tan, V. B. C. (2007), "Buckling of carbon nanotubes: A literature survey", J. Nanosci. Nanotechnol., 7, 4221-4247. https://doi.org/10.1166/jnn.2007.924
- Whitby, M. and Quirke, N. (2007), "Fluid flow in carbon nanotubes and nanopipes", Nature Nanotechnol. 2, 87-94. https://doi.org/10.1038/nnano.2006.175
- White, C. T., Robertson, D. H. and Mintmire, J. W. (1993), "Helical and rotational symmetries of nanoscale graphitic tubules", Phys. Rev. B, 47, 5485-5488. https://doi.org/10.1103/PhysRevB.47.5485
- Wong, E. W., Sheehan, P. E. and Lieber, C. M. (1997), "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes", Science, 277, 1971-1975. https://doi.org/10.1126/science.277.5334.1971
- Xu, X., Thwe, M. M., Shearwood, C. and Liao, K. (2002), "Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films", Appl. Phys. Lett. 81, 2833-2835. https://doi.org/10.1063/1.1511532
- Yang, X., Wu, G. and Dong, J. (2006), "Structural transformations of double-walled carbon nanotubes bundle under hydrostatic pressure", Appl. Phys. Lett., 89, 113101. https://doi.org/10.1063/1.2266529
- Yakobson, B. I., Brabec, C. J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: Instabilities beyond linear response", Phys. Rev. Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
- Yakobson, B. J. and Smalley, R. E. (1997), "Fullerene nanotubes: C-1000000 and beyond", Am. Sci., 85, 324-337.
- Yu, M. F., Kowalewski, T. and Ruoff, R. S. (2000), "Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force", Phys. Rev. Lett. 85, 1456-1459. https://doi.org/10.1103/PhysRevLett.85.1456
- Yu, M. F., Dyer, M. J. and Ruoff, R. S. (2001a), "Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study", J. Appl. Phys. 89, 4554-4557. https://doi.org/10.1063/1.1356437
- Yu, M. F., Kowalewski, T. and Ruoff, R. S. (2001b), "Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy", Phys. Rev. Lett. 86, 87-90. https://doi.org/10.1103/PhysRevLett.86.87
- Zhang, S., Khare, R., Belytschko, T., Hsia, K. J., Mielke, S. L. and Schatz, G. C. (2006), "Transition s tates and minimum energy pathways for the collapse of carbon nanotubes", Phys. Rev. B, 73, 075423. https://doi.org/10.1103/PhysRevB.73.075423
Cited by
- INVESTIGATION OF SIZE EFFECTS ON STATIC RESPONSE OF SINGLE-WALLED CARBON NANOTUBES BASED ON STRAIN GRADIENT ELASTICITY vol.09, pp.02, 2012, https://doi.org/10.1142/S0219876212400324
- Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory vol.11, pp.1, 2011, https://doi.org/10.12989/scs.2011.11.1.059
- Stiffener Insertion Based Variance in Radial Stiffness of Multi-Concentric Hollow Tubes vol.29, pp.04, 2013, https://doi.org/10.1017/jmech.2013.59
- Hard-to-Soft Transition in Radial Buckling of Multi-Concentric Nanocylinders vol.02, pp.01, 2012, https://doi.org/10.4236/wjm.2012.21006
- CORE-TUBE MORPHOLOGY OF MULTIWALL CARBON NANOTUBES vol.24, pp.01n02, 2010, https://doi.org/10.1142/S0217979210064228
- Brazier effect of single- and double-walled elastic tubes under pure bending vol.53, pp.1, 2015, https://doi.org/10.12989/sem.2015.53.1.017
- Elastic and Plastic Deformation of Carbon Nanotubes vol.14, pp.None, 2011, https://doi.org/10.1016/j.proeng.2011.07.298
- Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes vol.4, pp.3, 2011, https://doi.org/10.12989/imm.2011.4.3.239
- Approximate formulation for bifurcation buckling loads of axially compressed cylindrical shells with an elastic core vol.4, pp.4, 2009, https://doi.org/10.12989/imm.2011.4.4.313