DOI QR코드

DOI QR Code

Buckling characteristics of multiwalled carbon nanotubes under external pressure

  • Sato, Motohiro (Department of Socio-Environmental Engineering, Graduate School of Engineering, Hokkaido University) ;
  • Shima, Hiroyuki (Department of Applied Physics, Graduate School of Engineering, Hokkaido University)
  • Received : 2009.05.14
  • Accepted : 2009.05.23
  • Published : 2009.06.25

Abstract

This article describes recent work on mechanics of carbon nanotubes, one of the most fundamental and amazing man-made nanostructures. The noteworthy point is that "nano"-scale mechanics of carbon nanotubes can be well described by the continuum elastic theories for "macro"-scale thin shells. This provides an efficient means to elucidate mechanical deformation effects of carbon nanotubes on their physical and chemical properties, which is significant to develop new-generation nanomaterials based on nanotubes and their composites. Potential applications of the mechanical deformation of nanotubes in nano-electronics and nano-biology are also commented. In addition, theoretical investigations regarding external pressure buckling is carried out here and we have numerically confirmed that larger N (the number of layers) and a smaller D (the innermost diameter) make "corrugation modes" with a larger mode-index k be energetically favored.

Keywords

References

  1. Arias, I. and Arroyo, M. (2008), "Size-dependent nonlinear elastic scaling of multiwalled carbon nanotubes", Phys. Rev. Lett., 100, 085503. https://doi.org/10.1103/PhysRevLett.100.085503
  2. Arroyo, M. and Belytschko, T. (2003), "Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes", Phys. Rev. Lett. 91, 215505. https://doi.org/10.1103/PhysRevLett.91.215505
  3. Arroyo, M. and Arias, I. (2008), "Rippling and a phase-transforming mesoscopic model for multiwalled carbon nanotubes", J. Mech. Phys. Solids, 56, 1224-1244. https://doi.org/10.1016/j.jmps.2007.10.001
  4. Avouris, P., Hertel, T., Martel, R., Schmidt, T., Shea, H. R. and Walkup, R. E. (1999), "Carbon nanotubes: nanomechanics, manipulation, and electronic devices", Appl. Surface Sci. 141, 201-209. https://doi.org/10.1016/S0169-4332(98)00506-6
  5. Bal, S. and Samal, S. S. (2007), "Carbon nanotube reinforced polymer composites - A state of the art", Bull. Mater. Sci., 30, 379-386. https://doi.org/10.1007/s12034-007-0061-2
  6. Balakrishnan, R. and Dandoloff, R. (2008), "Effect of conformations on charge transport in a thin elastic tube", Nonlinearity, 21, 1-11. https://doi.org/10.1088/0951-7715/21/1/001
  7. Batra, R. C. and Sears, A. (2007), "Continuum models of multi-walled carbon nanotubes", Int. J. Solids. Struct. 44, 7577-7596. https://doi.org/10.1016/j.ijsolstr.2007.04.029
  8. Benedict, L. X., Chopra, N. G., Cohen, M. L., Zettl, A., Louie, S. G. and Crespi, V. H. (1998), "Microscopic determination of the interlayer binding energy in graphite", Chem. Phys. Lett. 286, 490-496. https://doi.org/10.1016/S0009-2614(97)01466-8
  9. Bernholc, J., Brabec, C., Nardelli, M. B. Maiti, A., Roland, C. and Yakobson, B. I. (1998), "Theory of growth and mechanical properties of nanotubes", Appl. Phys. A, 67, 39-46. https://doi.org/10.1007/s003390050735
  10. Bredeau, S., Peeterbroeck, S., Bonduel, D., Alexandre, M. and Dubois, P. (2008), "From carbon nanotube coatings to high-performance polymer nanocomposites", Polym. Int., 57, 547-553. https://doi.org/10.1002/pi.2375
  11. Chang, T. C. (2007), "Torsional behavior of chiral single-walled carbon nanotubes is loading direction dependant", Appl. Phys. Lett. 90, 201910. https://doi.org/10.1063/1.2739325
  12. Chesnokov, S. A., Nalimova, V. A., Rinzler, A. G., Smalley, R. E. and Fischer, J. E. (1999), "Mechanical energy storage in carbon nanotube springs", Phys. Rev. Lett. 82, 343-346. https://doi.org/10.1103/PhysRevLett.82.343
  13. Chopra, N. G., Benedict, L. X., Crespi, V. H., Cohen, M. L., Louie, S. G. and Zettl, A. (1995), "Fully collapsed carbon nanotubes", Nature, 377, 135-138. https://doi.org/10.1038/377135a0
  14. Christofilos, D., Arvanitidis, J., Kourouklis, G. A., Ves, S., Takenobu, T., Iwasa, Y. and Kataura, H. (2007), "Identification of inner and outer shells of double-wall carbon nanotubes using high-pressure Raman spectroscopy", Phys. Rev. B, 76, 113402. https://doi.org/10.1103/PhysRevB.76.113402
  15. Demczyk, B. G., Wang, Y. M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, O. (2002), "Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes", Mater. Sci. Eng. A, 334, 173-178. https://doi.org/10.1016/S0921-5093(01)01807-X
  16. Despres, J. F., Daguerre, E. and Lafdi, K. (1995), "Flexibility of graphene layers in carbon nanotubes", Carbon, 33, 87-89. https://doi.org/10.1016/0008-6223(95)91118-Q
  17. Elliott, J. A., Sandler, J. K. W., Windle, A. H., Young, R. J. and Shaffer, M. S. P. (2004), "Collapse of singlewall carbon nanotubes is diameter dependent", Phys. Rev. Lett. 92, 095501. https://doi.org/10.1103/PhysRevLett.92.095501
  18. Frackowiak, E. and Beguin, R. (2001), "Carbon materials for the electrochemical storage of energy in capacitors", Carbon, 39, 937-950. https://doi.org/10.1016/S0008-6223(00)00183-4
  19. Frackowiak, E. and Beguin, R. (2002), "Electrochemical storage of energy in carbon nanotubes and nanostructured carbons", Carbon, 40, 1775-1787. https://doi.org/10.1016/S0008-6223(02)00045-3
  20. Gadagkar, V., Maiti, P. K., Lansac, Y., Jagota, A. and Sood, A. K. (2006), "Collapse of double-walled carbon nanotubes bundles under hydrostatic pressure", Phys. Rev. B, 73, 085402. https://doi.org/10.1103/PhysRevB.73.085402
  21. Gao, G. H., Cagin, T. and Goddard, W. A. (1998), "Energetics, structure mechanical and vibrational properties of single-walled carbon nanotubes", Nanotechnology 9, 184-191. https://doi.org/10.1088/0957-4484/9/3/007
  22. Harris, P. J. F. (2004), "Carbon nanotube composites", Int. Mater. Rev., 49, 31-43. https://doi.org/10.1179/095066004225010505
  23. Hasegawa, M. and Nishidate, K. (2006), "Radial deformation and stability of single-wall carbon nanotubes under hydrostatic pressure", Phys. Rev. B, 74, 115401. https://doi.org/10.1103/PhysRevB.74.115401
  24. Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic Properties of C and BxCyNz composite nanotubes", Phys. Rev. Lett., 80, 4502-4505. https://doi.org/10.1103/PhysRevLett.80.4502
  25. Hertel, T., Walkup, R. E. and Avouris, P. (1998), "Deformation of carbon nanotubes by surface van der Waals forces", Phys. Rev. B 58, 13870-13873. https://doi.org/10.1103/PhysRevB.58.13870
  26. Iijima,S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
  27. Iijima, S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys. 104, 2089-2092. https://doi.org/10.1063/1.470966
  28. Jensen, K., Mickelson, W., Kis, A. and Zettl, A. (2007), "Buckling and kinking force measurements on individual multiwalled carbon nanotubes", Phys. Rev. B, 76, 195436. https://doi.org/10.1103/PhysRevB.76.195436
  29. Khosravian, N. and Rafii-Tabar, H. (2007), "Computational modelling of the flow of viscous fluids in carbon nanotubes", J. Phys. D 40, 7046-7052. https://doi.org/10.1088/0022-3727/40/22/027
  30. Khosravian, N. and Rafii-Tabar, H. (2008), "Computational modelling of a non-viscous fluid flow in a multiwalled carbon nanotube modelled as a Timoshenko beam", Nanotechnology, 19, 275703. https://doi.org/10.1088/0957-4484/19/27/275703
  31. Kowalczyk, P., Holyst, R., Terrones, M. and Terrones, H. (2007), "Hydrogen storage in nanoporous carbon materials: myth and facts", Phys. Chem. Chem. Phys., 9, 1786-1792. https://doi.org/10.1039/b618747a
  32. Li, C. and Chou, T. W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct. 40, 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
  33. Li, X. F., Wang, B. L. and Mai, Y. W. (2008), "Effects of a surrounding elastic medium on flexural waves propagating in carbon nanotubes via nonlocal elasticity", J. Appl. Phys. 103, 074309. https://doi.org/10.1063/1.2903444
  34. Liu, T., Phang, I., Shen, L., Chow, S. and Zhang, W. (2004), "Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites", Macromolecules, 37, 7214. https://doi.org/10.1021/ma049132t
  35. Lopez, M. J., Rubio, A., Alonso, J. A., Qin, L. C. and Iijima, S. (2001), "Novelpolygonized single-wall carbon nanotube bundles", Phys. Rev. Lett., 86, 3056-3059. https://doi.org/10.1103/PhysRevLett.86.3056
  36. Lordi, V. and Yao, N. (1998), "Radial compression and controlled cutting of carbon nanotubes", J. Chem. Phys. 109, 2509-2512. https://doi.org/10.1063/1.476822
  37. Lu, J. P. (1997), "Elastic properties of carbon nanotubes and nanoropes", Phys. Rev. Lett., 79, 1297-1300. https://doi.org/10.1103/PhysRevLett.79.1297
  38. Majumder, M., Chopra, N., Andrews, R. and Hinds, B. J. (2005), "Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes", Nature, 438, 44-44. https://doi.org/10.1038/438044a
  39. Nardelli, M. B., Yakobson, B. I. and Bernholc, J. (1998), "Mechanism of strain release in carbon nanotubes", Phys. Rev. B, 57, 4277-4280. https://doi.org/10.1103/PhysRevB.57.R4277
  40. Natsuki, T. and Endo, M. (2004), "Stress simulation of carbon nanotubes in tension and compression", Carbon, 42, 2147-2151. https://doi.org/10.1016/j.carbon.2004.04.022
  41. Natsuki, T., Tantrakarn, K. and Endo, M. (2004a), "Effects of carbon nanotube structures on mechanical properties", Appl. Phys. A, 79, 117-124. https://doi.org/10.1007/s00339-003-2492-y
  42. Natsuki, T., Tantrakarn, K. and Endo, M. (2004b), "Prediction of elastic properties for single-walled carbon nanotubes", Carbon, 42, 39-45. https://doi.org/10.1016/j.carbon.2003.09.011
  43. Nishio, T., Miyato, Y., Kobayashi, K., Matsushige, K. and Yamada, H. (2008), "Piezoresistive properties of carbon nanotubes under radial force investigated by atomic force microscopy", Appl. Phys. Lett. 92, 063117. https://doi.org/10.1063/1.2857480
  44. Noy, A., Park, H. G., Fornasiero, F., Holt, J. K., Grigoropoulos, C. P. and Bakajin, O. (2007), "Nanofluidics in carbon nanotubes", Nano Today, 2, 22-29.
  45. Ono, S. and Shima, H. (2009), "Tuning the electrical resistivity of semiconductor thin films by nanoscale corrugation", Phys. Rev. B, 79, 235407. https://doi.org/10.1103/PhysRevB.79.235407
  46. Onoe, J., Ito, T., Shin-ishi, K., Ohno, K., Noguchi, Y. and Ueda, S. (2007), "Valence electronic structure of crosslinked C-60 polymers: In situ high-resolution photoelectron spectroscopic and density-functional studies", Phys. Rev. B, 75, 233410. https://doi.org/10.1103/PhysRevB.75.233410
  47. Overney, G., Zhang, W. and Tomanek, D. (1993), "Structural rigidity and low-frequency vibrational-modes of long carbon tubeles", Z. Phys. D, 27, 93-96. https://doi.org/10.1007/BF01436769
  48. Peters, M. J., McNeil, L. E., Lu, J. P. and Kahn, D. (2000), "Structural phase transition in carbon nanotube bundles under pressure", Phys. Rev. B, 61, 5939-5944. https://doi.org/10.1103/PhysRevB.61.5939
  49. Poncharal, P., Wang, Z. L., Ugarte, D. and de Heer W. A. (1999), "Electrostatic deflections and electromechanical resonances of carbon nanotubes", Science, 283, 1513-1516. https://doi.org/10.1126/science.283.5407.1513
  50. Qian, D., Liu, W. K., Subramoney, S. and Ruoff, R. S. (2003), "Effect of interlayer potential on mechanical deformation of multiwalled carbon nanotubes", J. Nanosci. Nanotechnol, 3, 185-191. https://doi.org/10.1166/jnn.2003.199
  51. Reich, S., Thomsen, C. and Ordejon, P. (2002), "Elastic properties of carbon nanotubes under hydrostatic pressure", Phys. Rev. B, 65, 153407. https://doi.org/10.1103/PhysRevB.65.153407
  52. Reich, S., Thomsen, C. and Ordejon, P. (2003), "Elastic properties and pressure-induced phase transitions of single-walled carbon nanotubes", Phys. Stat. Solid. B. 235, 354-359. https://doi.org/10.1002/pssb.200301621
  53. Rols, S., Gontcharenko, I. N., Almairac, R., Sauvajol, J. L. and Mirebeau, I. (2001), "Polygonization of singlewall carbon nanotube bundles under high pressure", Phys. Rev. B, 64, 153401. https://doi.org/10.1103/PhysRevB.64.153401
  54. Ruoff, R. S. and Lorents, D. C. (1995), "Mechanical and thermal-properties of carbon nanotubes", Carbon, 33(7), 925-930. https://doi.org/10.1016/0008-6223(95)00021-5
  55. Ruoff, R. S., Tersoff, J., Lorents, D. C., Subramoney, S. and Chan, B. (1993), "Radial deformation of carbon nanotubes by Van-der-Waals forces", Nature, 364, 514-516. https://doi.org/10.1038/364514a0
  56. Sharma, S. M., Karmakar, S., Sikka, S. K., Teredesai, P. V., Sood, A. K., Govindaraj, A. and Rao, C. N. R. (2001), "Pressure-induced phase transformation and structural resilience of single-wall carbon nanotube bundles", Phys. Rev. B, 63, 205417. https://doi.org/10.1103/PhysRevB.63.205417
  57. She, W., Jiang, B., Han, B. S. and Xie, S. S. (2000), "Investigation of the radial compression of carbon nanotubes with a scanning probe microscope", Phys. Rev. Lett., 84, 3634-3637. https://doi.org/10.1103/PhysRevLett.84.3634
  58. Shima, H. and Sato, M. (2008), "Multiple radial corrugations in multiwalled carbon nanotubes under pressure", Nanotechnology, 19, 495705. https://doi.org/10.1088/0957-4484/19/49/495705
  59. Shima, H. and Sato, M. (2009), "Pressure-induced structural transitions in multi-walled carbon nanotubes", Physica Status Solidi (a) , in press; arXiv:0905.4145.
  60. Shima, H., Yoshioka, H. and Onoe, J. (2009), "Geometry-driven shift in the Tomonaga-Luttinger exponent of deformed cylinders", Phys. Rev. B, 79, 201401. https://doi.org/10.1103/PhysRevB.79.201401
  61. Sun, C. and Liu, K. (2008), "Combined torsional buckling of multi-walled carbon nanotubes coupling with axial loading and radial pressures", Int. J. Solids. Struct. 45, 2128-2139. https://doi.org/10.1016/j.ijsolstr.2007.11.009
  62. Taira, H. and Shima, H. (2007), "Curvature effects on surface electron states in ballistic nanostructures", Surface Science, 601, 5270-5275. https://doi.org/10.1016/j.susc.2007.04.220
  63. Taira, H. and Shima, H. "Torsion-induced persistent current in a twisted quantum ring", submitted; arXiv:0904.3149. https://doi.org/10.1088/0953-8984/22/7/075301
  64. Tang, D. S., Bao, Z. X., Wang, L. J., Chen, L. C., Sun, L. F., Liu, Z. Q., Zhou, W. Y. and Xie, S. S. (2000), "The electrical behavior of carbon nanotubes under high pressure", J. Phys. Chem. Solids, 61, 1175-1178. https://doi.org/10.1016/S0022-3697(99)00381-9
  65. Tang, J., Qin, L. C., Sasaki, T., Yudasaka, M., Matsushita, A. and Iijima, S. (2000), "Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure", Phys. Rev. Lett. 85, 1887-1889. https://doi.org/10.1103/PhysRevLett.85.1887
  66. Tang, J., Qin, L. C., Sasaki, T., Yudasaka, M., Matsushita, A. and Iijima, S. (2002), "Revealing properties of single-walled carbon nanotubes under high pressure", J. Phys. Condens. Matt. 14, 10575-10578. https://doi.org/10.1088/0953-8984/14/44/335
  67. Tangney, P., Capaz, R. B., Spataru, C. D., Cohen, M. L. and Louie, S. G. (2005), "Structural transformations of carbon nanotubes under hydrostatic pressure", Nano Lett., 5, 2268-2273. https://doi.org/10.1021/nl051637p
  68. Tersoff, J. and Ruoff, R. S. (1994), "Structural properties of a carbon-nanotube crystal", Phys. Rev. Lett., 73, 676-679. https://doi.org/10.1103/PhysRevLett.73.676
  69. Toda, Y., Ryuzaki, S. and Onoe, J. (2008), "Femtosecond carrier dynamics in electron-beam-irradiated C-60 film", Appl. Phys. Lett. 92, 094102. https://doi.org/10.1063/1.2838347
  70. Treacy, M. M. J., Ebbesen, T. W. and Gibson, J. M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381, 678-680. https://doi.org/10.1038/381678a0
  71. Wang, C. Y., Ru, C. Q. and Mioduchowski, A. (2003), "Elastic buckling of multiwall carbon nanotubes under high pressure", J. Nanosci. Nanotechnol., 3, 199-208. https://doi.org/10.1166/jnn.2003.185
  72. Wang, C. Y., Zhang, C. M., Wang, C. M. and Tan, V. B. C. (2007), "Buckling of carbon nanotubes: A literature survey", J. Nanosci. Nanotechnol., 7, 4221-4247. https://doi.org/10.1166/jnn.2007.924
  73. Whitby, M. and Quirke, N. (2007), "Fluid flow in carbon nanotubes and nanopipes", Nature Nanotechnol. 2, 87-94. https://doi.org/10.1038/nnano.2006.175
  74. White, C. T., Robertson, D. H. and Mintmire, J. W. (1993), "Helical and rotational symmetries of nanoscale graphitic tubules", Phys. Rev. B, 47, 5485-5488. https://doi.org/10.1103/PhysRevB.47.5485
  75. Wong, E. W., Sheehan, P. E. and Lieber, C. M. (1997), "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes", Science, 277, 1971-1975. https://doi.org/10.1126/science.277.5334.1971
  76. Xu, X., Thwe, M. M., Shearwood, C. and Liao, K. (2002), "Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films", Appl. Phys. Lett. 81, 2833-2835. https://doi.org/10.1063/1.1511532
  77. Yang, X., Wu, G. and Dong, J. (2006), "Structural transformations of double-walled carbon nanotubes bundle under hydrostatic pressure", Appl. Phys. Lett., 89, 113101. https://doi.org/10.1063/1.2266529
  78. Yakobson, B. I., Brabec, C. J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: Instabilities beyond linear response", Phys. Rev. Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
  79. Yakobson, B. J. and Smalley, R. E. (1997), "Fullerene nanotubes: C-1000000 and beyond", Am. Sci., 85, 324-337.
  80. Yu, M. F., Kowalewski, T. and Ruoff, R. S. (2000), "Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force", Phys. Rev. Lett. 85, 1456-1459. https://doi.org/10.1103/PhysRevLett.85.1456
  81. Yu, M. F., Dyer, M. J. and Ruoff, R. S. (2001a), "Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study", J. Appl. Phys. 89, 4554-4557. https://doi.org/10.1063/1.1356437
  82. Yu, M. F., Kowalewski, T. and Ruoff, R. S. (2001b), "Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy", Phys. Rev. Lett. 86, 87-90. https://doi.org/10.1103/PhysRevLett.86.87
  83. Zhang, S., Khare, R., Belytschko, T., Hsia, K. J., Mielke, S. L. and Schatz, G. C. (2006), "Transition s tates and minimum energy pathways for the collapse of carbon nanotubes", Phys. Rev. B, 73, 075423. https://doi.org/10.1103/PhysRevB.73.075423

Cited by

  1. INVESTIGATION OF SIZE EFFECTS ON STATIC RESPONSE OF SINGLE-WALLED CARBON NANOTUBES BASED ON STRAIN GRADIENT ELASTICITY vol.09, pp.02, 2012, https://doi.org/10.1142/S0219876212400324
  2. Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory vol.11, pp.1, 2011, https://doi.org/10.12989/scs.2011.11.1.059
  3. Stiffener Insertion Based Variance in Radial Stiffness of Multi-Concentric Hollow Tubes vol.29, pp.04, 2013, https://doi.org/10.1017/jmech.2013.59
  4. Hard-to-Soft Transition in Radial Buckling of Multi-Concentric Nanocylinders vol.02, pp.01, 2012, https://doi.org/10.4236/wjm.2012.21006
  5. CORE-TUBE MORPHOLOGY OF MULTIWALL CARBON NANOTUBES vol.24, pp.01n02, 2010, https://doi.org/10.1142/S0217979210064228
  6. Brazier effect of single- and double-walled elastic tubes under pure bending vol.53, pp.1, 2015, https://doi.org/10.12989/sem.2015.53.1.017
  7. Elastic and Plastic Deformation of Carbon Nanotubes vol.14, pp.None, 2011, https://doi.org/10.1016/j.proeng.2011.07.298
  8. Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes vol.4, pp.3, 2011, https://doi.org/10.12989/imm.2011.4.3.239
  9. Approximate formulation for bifurcation buckling loads of axially compressed cylindrical shells with an elastic core vol.4, pp.4, 2009, https://doi.org/10.12989/imm.2011.4.4.313