DOI QR코드

DOI QR Code

Quantitative Evaluation of Non-Carbon Content in the Single Wall Carbon Nanotube Soot using Thermogravimetric Analysis

  • Han, J.H. (Nanomaterials-processing Group, Korea Electronics Technology Institute) ;
  • An, K.H. (Nano Material Research Department, Jeonju Institute of Machinery and Carbon Composites) ;
  • Lee, N.S. (Department of Nano Engineering, Sejong University) ;
  • Goak, J.C. (Department of Nano Engineering, Sejong University) ;
  • Jeong, M.S. (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Choi, Y.C. (Research Center, Hanwha Nanotech Co. Ltd.) ;
  • Oh, K.H. (Korean Agency for Technology and Standards) ;
  • Kim, K.K. (BK 21 Physics Division, Sungkyunkwan University) ;
  • Lee, Y.H. (BK 21 Physics Division, Sungkyunkwan University)
  • Received : 2009.02.12
  • Accepted : 2009.03.13
  • Published : 2009.03.30

Abstract

We measured the non-carbon content of single-walled carbon nanotubes (SWCNTs) in SWCNT soot using thermogravimetric analysis. The weight increased percentage by the oxidation of metal in the raw soot is well obtained by TGA graph which was confirmed with ICP-AES, XRD, and XPS. This work will be very useful for the purity precise evaluation of SWCNT with UN-vis-NIR spectroscopy.

Keywords

References

  1. Dresselhaus, M. S.; Avouris, P. "Carbon Nanotubes: Synthesis, Structure, Properties and Applications", ed. M. S. Dresselhaus, G. Dresselhaus and P. Avouris, Heidelberg: Springler-Verlag; 2000, 1.
  2. Avouris, P. Acc. Chem. Res. 2002, 35, 1026. https://doi.org/10.1021/ar010152e
  3. Giles, J. Nature 2004, 432, 791.
  4. Arepalli, S.; Nikolaev, P.; Gorelik, O.; Hadjiev, V. G.; Holmes, W.; Files, B.; Yowell, L. Carbon 2004, 42, 1783. https://doi.org/10.1016/j.carbon.2004.03.038
  5. Itkis, M. E.; Perea, D. E.; Jung, R.; Niyogi, S.; Haddon, R. C. J. Am. Chem. Soc. 2005, 127, 5990. https://doi.org/10.1021/ja043153l
  6. Landi, B. J.; Ruf, H. J.; Evans, C. M.; Cress, C. D.; Raffaelle, R. P. J. Phys. Chem. B 2005, 109, 9952. https://doi.org/10.1021/jp044990c
  7. Itkis, M. E.; Perea, D. E.; Niyogi, S.; Rickard, S. M.; Hamon, M. A.; Hu, H.; Zhao, B.; Haddon, R. C. Nano Lett. 2002, 3, 309. https://doi.org/10.1021/nl025926e
  8. Ryabenko, A. G.; Dorofeeva, T. V.; Zvereva, G. I. Carbon 2004, 42, 1523. https://doi.org/10.1016/j.carbon.2004.02.005
  9. Lobach, A. S.; Spitsina, N. G.; Terekhov, S. V.; Obraztsova, E. D. Phys. Solid State 2002, 44, 475. https://doi.org/10.1134/1.1462677
  10. Jeong, M. S.; Byeon, C. C.; Cha, O. H.; Jeong, H.; Han, J. H.; Choi, Y. C.; An, K. H.; Oh, K. H.; Kim, K. K.; Lee, Y. H. NANO 2008, 3, 101. https://doi.org/10.1142/S1793292008000885

Cited by

  1. Neuron-like polyelectrolyte–carbon nanotube composites for ultra-high loading of metal nanoparticles vol.38, pp.10, 2014, https://doi.org/10.1039/C4NJ00638K