Browse > Article
http://dx.doi.org/10.5573/JSTS.2017.17.2.199

Mutually-Actuated-Nano-Electromechanical (MA-NEM) Memory Switches for Scalability Improvement  

Lee, Ho Moon (Department of Electronic Engineering, Sogang University)
Choi, Woo Young (Department of Electronic Engineering, Sogang University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.17, no.2, 2017 , pp. 199-203 More about this Journal
Abstract
Mutually-actuated-nano-electromechanical (MA-NEM) memory switches are proposed for scalability improvement. While conventional NEM memory switches have fixed electrode lines, the proposed MA-NEM memory switches have mutually-actuated cantilever-like electrode lines. Thus, MA-NEM memory switches show smaller deformations of beams in switching. This unique feature of MA-NEM memory switches allows aggressive reduction of the beam length while maintaining nonvolatile property. Also, the scalability of MA-NEM memory switches is confirmed by using finite-element (FE) simulations. MA-NEM memory switches can be promising solutions for reconfigurable logic (RL) circuits.
Keywords
Reconfigurable logic; nano-electro-mechanical switch; scalability; CMOS-NEM hybrid circuit; nonvolatility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Sun and P. G. Y. Tsui, "Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation." IEEE Journal of Solid-State Circuits, vol.30, no.8, pp. 947-949, Aug. 2002.
2 Y. J. Kim and W.Y. Choi, "Nonvolatile nanoelectromechanical memory switches for low-power and high-speed field-programmable gate arrays," IEEE Trans. Electron Devices, vol.62, no.2, pp.673-679, 2015.   DOI
3 W. Y. Choi and Y. J. Kim, "Three-Dimensional Integration of Complementary Metal-Oxide-Semiconductor (CMOS)-Nano-Electromechanical (NEM) Hybrid Reconfigurable Circuits," IEEE Electron Device Letters, vol.36, no.9, pp. 887-889, Sep. 2015.   DOI
4 S. Chong, B. Lee, K. B. Parizi, J. Provine, S. Mitra, R. T. Howe and H.-S. P. Wong, "Integration of nanoelectromechanical (NEM) relays with silicon CMOS with functional CMOS-NEM circuit," Electron Devices Meeting (IEDM), 2011 IEEE International, pp.701-704, DC, USA, Dec. 2011
5 K. Kimihiko, V. Stojanovic and T.J.K. Liu, "Non-Volatile Nano-Electro-Mechanical Memory for Energy-Efficient Data Searching." IEEE Electron Device Letters, vol.37, no.1, pp. 31-34, Dec. 2015.   DOI
6 P. Singh, G. L. Chua, Y. S. Liang, K. G. Jayaraman, A. T. Do and T. T. Kim, "Anchor-free NEMS non-volatile memory cell for harsh environment data storage." Journal of Micromechanics and Microengineering, vol.24, no.11, p. 115007, Oct. 2014.   DOI
7 P. Vincent, G. L. Chua, R. Vaddi, J. M. Tsai and T. T. Kim, "The shuttle nanoelectromechanical nonvolatile memory." IEEE Electron Device Society, vol.23, no.4, pp. 1137-1143, Jan. 2012.
8 B. W. Soon, E. J. Ng, Y. Qian, N. Singh, M. J. Tsai and C. Lee, "A bi-stable nanoelectromechanical non-volatile memory based on van der Waals force." Applied Physics Letters, vol.103, no.5, p. 053122, Feb. 2013.   DOI
9 G. M. Rebeiz, RF MEMS: Theory, design, and technology, 1st ed., Wiley, New York, 2003.
10 M. P. Boer and T. A. Michalske, "Accurate method for determining adhesion of cantilever beams." Journal of Applied physics, vol.82, no.2, pp. 817-827, July. 1999.   DOI
11 J. A. Knapp, and M. P. Boer, "Mechanics of Microcantilever Beams Subject to Combined Electrostatic and Adhesive Forces," J. Microelectromech. Syst., vol.11, no.6, pp.754-764, 2002.   DOI
12 J. Yaung, L. Hutin, J. Jeon, and T. J. K. Liu, "Adhesive force characterization for MEM logic relays with sub-micron contacting regions," J. Microelectromech. Syst., vol.23, no.1, pp.198-203, 2014.   DOI
13 D. Lee, V. Pott, H. Kam, R. Natanael, and T. J. K. Liu, "AFM chracteriztion of adhesion force in micro-relays," Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, pp.232-235, Wanchai, Hong Kong, Jan, 2010
14 G. Boselli, V. Reddy and C. Duvvury, "Latch-up in 65nm CMOS technology: a scaling perspective." Reliability Physics Symposium, 2005. Proceedings. 43rd Annual, Dallas, USA, pp.137-144, Apr. 2005.
15 S. Chong, B. Lee, J Provine, "Integration of nanoelectromechanical (NEM) relays with silicon CMOS with functional CMOS-NEM circuit." Proceedings of the System Level Interconnect Prediction Workshop. IEEE Press, pp.30.5.1-30.5.4 Washington DC, USA, Dec. 2011
16 C. Dong, C. Chen, S. Mitra and D. Chen, "Architecture and performance evaluation of 3D CMOS-NEM FPGA," SLIP'11 Proceedings of the System Level Interconnect Prediction Workshop, pp.2-9, NJ, USA, Jun. 2011
17 H. Scott, "The roles of FPGAs in reprogrammable systems." Proceedings of the IEEE, vol.86, no.4, pp. 615-638, Apr. 1998.   DOI
18 D. E. Van den Bout, J. N. Morris, D. Thomae, S. Labrozzi, S. Wingo and P. Hallman, "Anyboard : An FPGA-based, reconfigurable system," IEEE Design & Test, pp.21-30, CA, USA, July. 1992.