• Title/Summary/Keyword: LNA Mixer

Search Result 74, Processing Time 0.034 seconds

A Low Noise and Low Power RF Front-End for 5.8-GHz DSRC Receiver in 0.13 ㎛ CMOS

  • Choi, Jae-Yi;Seo, Shin-Hyouk;Moon, Hyun-Won;Nam, Il-Ku
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • A low noise and low power RF front-end for 5.8 GHz DSRC (Dedicated Short Range Communication) receiver is presented. The RF front-end is composed of a single-to-differential two-stage LNA and a Gilbert down-conversion mixer. In order to remove an external balun and 5.8 GHz LC load tuning circuit, a single-to-differential LNA with capacitive cross coupled pair is proposed. The RF front-end is fabricated in a 0.13 ${\mu}m$ CMOS process and draws 7.3 mA from a 1.2 V supply voltage. It shows a voltage gain of 40 dB and a noise figure (NF) lower than 4.5 dB over the entire DSRC band.

Design of the RF Front-end for L1/L2 Dual-Band GPS Receiver (L1/L2 이중-밴드 GPS 수신기용 RF 전단부 설계)

  • Kim, Hyeon-Deok;Oh, Tae-Soo;Jeon, Jae-Wan;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1169-1176
    • /
    • 2010
  • The RF front-end for L1/L2 dual-band Global Positioning System(GPS) receiver is presented in this paper. The RF front-end(down-converter) using low IF architecture consists of a wideband low noise amplifier(LNA), a current mode logic(CML) frequency divider and a I/Q down-conversion mixer with a poly-phase filter for image rejection. The current bleeding technique is used in the LNA and mixer to obtain the high gain and solve the head-room problem. The common drain feedback is adopted for low noise amplifier to achieve the wideband input matching without inductors. The fabricated RF front-end using $0.18{\mu}m$ CMOS process shows a gain of 38 dB for L1 and 41 dB for L2 band. The measured IIP3 is -29 dBm in L1 band and -33 dBm in L2 band, The input return loss is less than -10 dB from 50 MHz to 3 GHz. The measured noise figure(NF) is 3.81 dB for L1 band and 3.71 dB for L2 band. The image rejection ratio is 36.5 dB. The chip size of RF front end is $1.2{\times}1.35mm^2$.

High-$T_{c}$ Superconducting down-converter for Millimeterwave (밀리미터파용 고온초전도 다운-컨버터의 제작 및 고주파 특성 평가)

  • 강광용;김호영;김철수;곽민환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.358-361
    • /
    • 2002
  • The millirneterwave high-T$_{c}$ superconducting(HTS) down-converter sub-system with the HTS/III-V integrated mixer as the central device is demonstrated first. The constituent components of HTS down-converter sub-system such as a single balanced type integrated mixer with rat-race coupler, a cavity type bandpass filter (26 GHz), and a HTS planar lowpass filter(1 GHz), semiconductor LNA and IF-power amplifier, a driving electronic module for A/D converter, and a Stirling type mini-cooler module were combined into an International stand- and rack of 19-inch. From the RF(-61 dBm, 26.5GHz)and LO signal(-1 dBm, 25.6 GHz), IF signal(0dBm, 0.9 GHz) agreed with simulated results is obtained.d.

  • PDF

3-Gb/s 60-GHz Link With SiGe BiCMOS Receiver Front-End and CMOS Mixed-Mode QPSK Demodulator

  • Ko, Min-Su;Kim, Du-Ho;Rucker, Holger;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.256-261
    • /
    • 2011
  • We demonstrate 3-Gb/s wireless link using a 60-GHz receiver front-end fabricated in $0.25-{\mu}m$ SiGe:C bipolar complementary metal oxide semiconductor (BiCMOS) and a mixed-mode quadrature phase-shift keying (QPSK) demodulator fabricated in 60-nm CMOS. The 60-GHz receiver consists of a low-noise amplifier and a down-conversion mixer. It has the peak conversion gain of 16 dB at 62 GHz and the 3-dB intermediate-frequency bandwidth of 6 GHz. The demodulator using 1-bit sampling scheme can demodulate up to 4.8-Gb/s QPSK signals. We achieve successful transmission of 3-Gb/s data in 60 GHz through 2-m wireless link.

Design of a Rceiver MMIC for the CDMA Terminal (CDMA 단말기용 수신단 MMIC 설계)

  • 권태운;최재하
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • This paper presents a Receiver MMIC for the CDMA terminal. The complete circuit is composed of Low Noise Amplifier, Down Conversion Mixer, Intermediate Frequency Amplifier and Bias circuit. The Bias circuit implementation, which allows for compensation for threshold voltage and power supply voltage variation are provided. The proposed topology has high linearity and low noise characteristics. Results of the designed circuit are as follows: Overall conversion gain is 28.5 dB, input IP3 of LNA is 8 dBm, input IP3 of down conversion mixer is 0 dBm and total DC current consumption is 22.1 mA.

  • PDF

위성통신용 수신기의 설계

  • 정우영;백정기;최부귀
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.1 no.1
    • /
    • pp.119-233
    • /
    • 1996
  • 본 논문에서는 게이트의 길이가 0.25$\mu\textrm{m}$dlsGaAs HEMT(High Electron Mobility Transistor)를 이용하여 11.7GHz-12.2GHz 대역 위성통신용 수신기를 설계하였다. 설계된 수신기의 전체이득은 38dB 이상, 잡음지수 1.8dB 이하, 입출력단의 반사손실은 -10dB 이하를 보였다. 수신기는 저잡음증폭기(LNA), 중간주파수증폭기(IFA) , 믹서(Mixer), 국부발진기(LO) 로 구성되어 있으며 LO 주파수와 IF 주파수는 각각 10.75GHz 와 0.95GHz-1.45GHz이고 칩의 크기는 1.7mm $\times$2.5mm이다.

  • PDF

W-band Single-chip Receiver MMIC for FMCW Radar (FMCW 레이더용 W-대역 단일칩 수신기 MMIC)

  • Lee, Seokchul;Kim, Youngmin;Lee, Sangho;Lee, Kihong;Kim, Wansik;Jeong, Jinho;Kwon, Youngwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.159-168
    • /
    • 2012
  • In this paper, a W-band single-chip receiver MMIC for FMCW(Frequency-modulated continuous-wave) radar is presented using $0.15{\mu}m$ GaAs pHEMT technology. The receiver MMIC consists of a 4-stage low noise amplifier(LNA), a down-converting mixer and a 3-stage LO buffer amplifier. The LNA is designed to exhibit a low noise figure and high linearity. A resistive mixer is adopted as a down-converting mixer in order to obtain high linearity and low noise performance at low IF. An additional LO buffer amplifier is also demonstrated to reduce the required LO power of the W-band mixer. The fabricated W-band single-chip receiver MMIC shows an excellent performance such as a conversion gain of 6.2 dB, a noise figure of 5.0 dB and input 1-dB compression point($P_{1dB,in}$) of -12.8 dBm, at the RF frequency of $f_0$ GHz, LO input power of -1 dBm and IF frequency of 100 MHz.

Ka-band CMOS 2-Channel Image-Reject Receiver (Ka-대역 CMOS 2채널 이미지 제거 수신기)

  • Dongju Lee;Se-Hwan An;Ji-Han Joo;Jun-Beom Kwon;Younghoon Kim;Sanghun Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.109-114
    • /
    • 2023
  • In this paper, a 2-channel Image-Reject receiver using a 65-nm CMOS process is presented for Ka-band compact radars. The designed receiver consists of Low-Noise Amplifier (LNA), IQ mixer, and Analog Baseband (ABB). ABB includes a complex filter in order to suppress unwanted images, and the variable gain amplifiers (VGAs) in RF block and ABB have gain tuning range from 4.5-56 dB for wide dynamic range. The gain of the receiver is controlled by on-chip SPI controllers. The receiver has noise figure of <15 dB, OP1dB of >4 dBm, image rejection ratio of >30 dB, and channel isolation of >45 dB at the voltage gain of 36 dB, in the Ka-band target frequency. The receiver consumes 420 mA at 1.2 V supply with die area of 4000×1600 ㎛.

60 GHz CMOS SoC for Millimeter Wave WPAN Applications (차세대 밀리미터파 대역 WPAN용 60 GHz CMOS SoC)

  • Lee, Jae-Jin;Jung, Dong-Yun;Oh, Inn-Yeal;Park, Chul-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.670-680
    • /
    • 2010
  • A low power single-chip CMOS receiver for 60 GHz mobile application are proposed in this paper. The single-chip receiver consists of a 4-stage current re-use LNA with under 4 dB NF, Cgs compensating resistive mixer with -9.4 dB conversion gain, Ka-band low phase noise VCO with -113 dBc/Hz phase noise at 1 MHz offset from 26.89 GHz, high-suppression frequency doubler with -0.45 dB conversion gain, and 2-stage current re-use drive amplifier. The size of the fabricated receiver using a standard 0.13 ${\mu}m$ CMOS technology is 2.67 mm$\times$0.75 mm including probing pads. An RF bandwidth is 6.2 GHz, from 55 to 61.2 GHz and an LO tuning range is 7.14 GHz, from 48.45 GHz to 55.59 GHz. The If bandwidth is 5.25 GHz(4.75~10 GHz) The conversion gain and input P1 dB are -9.5 dB and -12.5 dBm, respectively, at RF frequency of 59 GHz. The proposed single-chip receiver describes very good noise performances and linearity with very low DC power consumption of only 21.9 mW.

Design Considerations of K-band Front-End Module for Dynamic Range (Dynamic Range를 고려한 K-band Front-End Module 설계)

  • Han, Geon-Hee;Jang, Youn-Gil;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • In this paper, we designed and analysed K-band front-end module for digital microwave communication system receiver which improvement of dynamic range. We also suggested method of minimum amplified input signal level used to minimize noise figure of low-noise amplifier for High dynamic range. The designed modules consist of active mixer with conversions gain and PL-DRO with high stability and quality factor. The designed modules performance is that has the characteristics of over 54dB conversion gain, 1.3dB noise figure.