• Title/Summary/Keyword: LMIS

검색결과 246건 처리시간 0.024초

불확실한 시간 지연 시스템을 위한 LMI 기반 슬라이딩 모드 관측기 설계법 (An LMI-Based Sliding Mode Observer Design Method for Uncertain Time-Delay Systems)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제12권10호
    • /
    • pp.1018-1021
    • /
    • 2006
  • This paper presents an LMI-based method to design sliding mode observers for a class of uncertain time-delay systems. Using LMIs we derive an existence condition of a sliding mode observer guaranteeing a stable sliding motion. And we give explicit formulas of the observer gain matrices. Finally, we give a simple LMI-based design algorithm, togeter with a numerical design example.

Approach to BMI Problems Using Evolution Strategy

  • Chung, Tae-Jin;Chung, Chan-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.224-224
    • /
    • 2000
  • Biaffine Matrix Inequalities(BIs) are known to give more general and flexible frameworks in control designs than Linear Matrix Inequalities(LMIs). However, BMIs are nonconvex constraints and very difficult to solve. In this paper, BMI problems are solved using Evolution Strategy(ES). Numerous BMI problems are solved to verify performances of ES solver for BMI problems and compared with those of Genetic Algorithms and Branch-and-Cut algorithm.

  • PDF

구조화된 불확실성을 갖는 입력지연 시스템의 강인제어 (Robust Control of Input Delayed Systems with Structured Uncertainty)

  • 이보형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.270-270
    • /
    • 2000
  • Input delay is frequently encountered in the practical systems since measurement delay and computational delay can be represented by input delay. In this viewpoint, this paper deals with the robust control problem of input delayed systems with structured uncertainty. Robust stability conditions are provided in terms of linear matrix inequalities(LMIs) and it is shown that the proposed conditions can give less conservative maximum bound of input delay guaranteeing robust stability.

  • PDF

Controller Design for Input-Saturated Linear Systems

  • C., Doojin;P., PooGyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.126-126
    • /
    • 2000
  • In this paper, we provide an approach of controller synthesis for input-saturated linear systems by a linear parameter varying (LPV) framework. Using directly the saturation nonlinearity as scheduling parameters, we propose an LPV-stabilizer with parameter-dependent dynamic state-feedback controller concept. Especially, the synthesis conditions are formulated in terms of linear matrix inequalities (LMIs) that can be solved very efficiency.

  • PDF

LMI를 이용한 다중 선형 시스템의 디지탈 재설계 (Digital Redesign of Multiple Linear Systems by Using LMIs)

  • 장욱;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.256-259
    • /
    • 2000
  • A new digital redesign method which can construct a digital controller for multiple linear systems is developed. The proposed method utilized the recently developed LMI theory to obtain a single digital controller which provide good state matching properties with multiple linear systems. A numerical example is provided to evaluate the feasibility of the proposed approach.

  • PDF

폴리토픽 모델을 갖는 시스템을 위한 적분 슬라이딩 모드 제어기의 LMI 기반 설계 (LMI-based Design of Integral Sliding Mode Controllers for Polytopic Models)

  • 최한호
    • 조명전기설비학회논문지
    • /
    • 제24권9호
    • /
    • pp.44-48
    • /
    • 2010
  • This paper presents an LMI-based method to design an integral sliding mode controller for an uncertain system with a polytopic model. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law.

출력 궤환 적분 슬라이딩 모드 제어기의 LMI 기반 설계 (LMI-based Design of Output Feedback Integral Sliding Mode Controllers)

  • 최한호
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.138-141
    • /
    • 2011
  • This paper presents an LMI-based method to design an output feedback integral sliding mode controller for a class of uncertain systems. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law. Finally, we give a numerical design example in order to show the effectiveness of the proposed method.

비선형 섭동을 갖는 뉴트럴 시스템의 시간종속 안정성 조건식 (Delay-Dependent Criterion for Stability of Uncertain Neutral Systems)

  • 박주현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2320-2322
    • /
    • 2000
  • In this paper, the problem of the stability analysis for linear neutral delay-differential systems with nonlinear perturbations is investigated. Using Lyapunov second method, a new delay-dependent sufficient condition for asymptotic stability of the systems in terms of linear matrix inequalities (LMIs), which can be easily solved by various convex optimization algorithms, is presented. A numerical example is given to illustrate the proposed method.

  • PDF

축차관측기를 사용한 슬라이딩 모드 제어 (Reduced Order Observer Based Sliding Mode Control)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1057-1060
    • /
    • 2006
  • This paper presents an LMI-based method to design a reduced order observer based sliding mode controller for a class of uncertain systems. Using LMIs we derive an existence condition of a reduced order observer and a sliding mode control law. And we give explicit formulas of the gain matrices. Finally, we give a numerical design example, together with a design algorithm.

New Stability Criteria for Linear Systems with Interval Time-varying State Delays

  • Kwon, Oh-Min;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.713-722
    • /
    • 2011
  • In the present paper, the problem of stability analysis for linear systems with interval time-varying delays is considered. By introducing a new Lyapunov-Krasovskii functional, new stability criteria are derived in terms of linear matrix inequalities (LMIs). Two numerical examples are given to show the superiority of the proposed method.