• Title/Summary/Keyword: Interconnect architecture

Search Result 44, Processing Time 0.033 seconds

New IEEE 1149.1 Boundary Scan Architecture for Multi-drop Multi-board System (멀티 드롭 멀티 보드 시스템을 위한 새로운 IEEE 1149.1 경계 주사 구조)

  • Bae, Sang-Min;Song, Dong-Sup;Kang, Sung-Ho;Park, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.11
    • /
    • pp.637-642
    • /
    • 2000
  • IEEE 1149.1 boundary scan architecture is used as a standard in board-level system testing. The simplicity of this architecture is an advantage in system testing, but at the same time, it it makes a limitation of applications. Because of several problems such as 3-state net conflicts, or ambiguity issues, interconnect testing for multi-drop multi-board systems is more difficult than that of single board systems. A new approach using IEEE 1149.1 boundary scan architecture for multi-drop multi-board systems is developed in this paper. Adding boundary scan cells on backplane bus lines, each board has a complete scan-chain for interconnect test. This new scan-path insertion method on backplane bus using limited 1149.1 test bus less area overhead and mord efficient than previous approaches.

  • PDF

Interconnect Process Technology for High Power Delivery and Distribution (전력전달 및 분배 향상을 위한 Interconnect 공정 기술)

  • Oh, Keong-Hwan;Ma, Jun-Sung;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.9-14
    • /
    • 2012
  • Robust power delivery and distribution are considered one of the major challenges in electronic devices today. As a technology develops (i.e. frequency and complexity, increase and size decreases), both power density and power supply noise increase, and voltage supply margin decreases. In addition, thermal problem is induced due to high power and poor power distribution. Until now most of studies to improve power delivery and distribution have been focused on device circuit or system architecture designs. Interconnect process technologies to resolve power delivery issues have not greatly been explored so far, but recently it becomes of great interest as power increases and voltage specification decreases in a smaller chip size.

A Study on the Verification Platform Architecture for MPSoC (MPSoC 검증 플랫폼 구조에 관한 연구)

  • Song, Tae-Hoon;Song, Moon-Vin;Oh, Chae-Gon;Chung, Yun-Mo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.74-79
    • /
    • 2007
  • In general, the high cost, long time, and complex steps are required in the design and implementation of MPSoC(Multi-Processor System on a Chip), therefore a platform is used to test the functionality and performance of IPs(Intellectual Properties). In this paper, we study a platform architecture to verify IPs based on Interconnect Network among processors, and show that the MPSoC platform gives better performance than a single processor for an application program.

Process Considerations for 80-GHz High-Performance p-i-n Silicon Photodetector for Optical Interconnect

  • Cho, Seong-Jae;Kim, Hyung-Jin;Sun, Min-Chul;Park, Byung-Gook;Harris, James S. Jr.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.370-376
    • /
    • 2012
  • In this work, design considerations for high-performance silicon photodetector are thoroughly investi- gated. Besides the critical dimensions of device, guidelines for process architecture are suggested. Abiding by those criteria for improving both direct-current (DC) and alternating-current (AC) perfor- mances, a high-speed low-operation power silicon photodetector based on p-i-n structure for optical interconnect has been designed by device simulation. An $f_{-3dB}$ of 80 GHz at an operating voltage of 1 V was obtained.

CMOS Interconnect Electronics Architecture for Reliable and Scalable Quantum Computer (확장성 신뢰성 갖춘 양자 컴퓨터를 위한 CMOS 기반 제어 및 센싱 회로 기술)

  • Jusung Kim;Junghwan Han;Jae-Won Nam;Kunhee Cho
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 2023
  • The current circuit technology that individually connects each qubit to a control circuit at room temperature has limitations in achieving scalability and reliability of a quantum computer. With the advent of cryogenic CMOS interconnect electronics, it is expected to dramatically improve the interconnect complexity, system reliability and size, and price. In this paper, we introduce the CMOS integrated sensing and control technology platform overcoming the problems caused by the fragile and sensitive characteristics of qubit.

Issues in Next Generation Streaming Server Design

  • Won, Youjip
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.335-354
    • /
    • 2001
  • .Next Generation Multimedia Streaming Technology Massive Scale Support $\rightarrow$ Clustered Solution Adaptive to Heterogeneous Network daptive to Heterogeneous Terminal Capability Presentation Technique .SMART Server Architecture .HERMES File System .Clustered Solution . High Speed Storage Interconnect .' Content Partitioning . Load Management . Support for Heterogeniety . Adaptive End to End Streaming Transport: Unicast vs. Multicast '. Scalable Encoding

  • PDF

Fast Array Architecture with Improved Reconfigurability (향상된 재구성능력을 가진 고속 어레이 구조)

  • Lee Jae-Ic;Kim Jinsang;Cho Won-Kyung;Kim Youngsoo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.451-454
    • /
    • 2004
  • The reconfigurable architecture is increasingly important for design of multi-mode communication systems and computation-intensive DSP systems. The proposed coarse-grain architecture is based on a reconfigurable processing element consisting of a MAC unit, a register file, a context data register, and PE interconnect control blocks. The main feature of the Proposed architecture is the loop context which enables faster configuration. Also, we propose another area-efficient reconfigurable architecture with improved reconfigurability. The SystemC modeling results show that the proposed architecture can reduce 9 clock cycles of 2D DCT compared to existing architectures.

  • PDF

On-line Bus Monitoring of a System Using Bondary-Scan (경계스캔 구조를 사용한 시스템의 온라인 버스 모니터링)

  • Song, Dong-Sup;Bae, Sang-Min;Kang, Sung-Ho;Park, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.12
    • /
    • pp.675-682
    • /
    • 2000
  • When a system is composed of multi-boards, an efficient bus arbitration method for the data transfer bus must be provided for guaranteeing proper operations. In this paper, a new test methodology is developed which is used for testing on-line bus arbitration. In the new test methodology, events that are occurred during bus arbitration are defined, and expected signals during fault-free bus arbitration are compared with the signals captured during on-line bus arbitration using boundary-scan cells. For this, a new test architecture is proposed which is efficient for the maintenance and the repair of multi-board systems. In addition, the new methodology can be used with off-line interconnect test using boundary-scan.

  • PDF

Hierarchical Multiplexing Interconnection Structure for Fault-Tolerant Reconfigurable Chip Multiprocessor

  • Kim, Yoon-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.318-328
    • /
    • 2011
  • Stage-level reconfigurable chip multiprocessor (CMP) aims to achieve highly reliable and fault tolerant computing by using interwoven pipeline stages and on-chip interconnect for communicating with each other. The existing crossbar-switch based stage-level reconfigurable CMPs offer high reliability at the cost of significant area/power overheads. These overheads make realizing large CMPs prohibitive due to the area and power consumed by heavy interconnection networks. On other hand, area/power-efficient architectures offer less reliability and inefficient stage-level resource utilization. In this paper, I propose a hierarchical multiplexing interconnection structure in lieu of crossbar interconnect to design area/power-efficient stage-level reconfigurable CMP. The proposed approach is able to keep the reliability offered by the crossbar-switch while reducing the area and power overheads. Experimental results show that the proposed approach reduces area by up to 21% and power by up to 32% when compared with the crossbar-switch based interconnection network.

Channel Equalization for High-speed applications using MATLAB

  • Kim, Young-Min;Park, Tae-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.57-66
    • /
    • 2019
  • This paper compared the performance with an overview of channel equalization techniques used in high-speed serial transceivers, including the homogeneous architecture and associated components for the GHz interconnect of backplane and cable channels. It also used the MATLAB tool to present system analysis and simulation results for continuous time equivalent structures. In the case of conventional continuous equalization, high frequency deficits occur due to the use of a comparator that is difficult to implement as well as the low speed limit. In this paper, the channel equalization technique based on the power spectrum analysis of clocks was used to compensate for the frequency loss, and the application of the TX+Channel and TX+Equalizer filters enabled the measurement of attenuation and equivalence without comparators. The application of blender and band-pass filters at high speeds also showed significant effectiveness.