DOI QR코드

DOI QR Code

CMOS Interconnect Electronics Architecture for Reliable and Scalable Quantum Computer

확장성 신뢰성 갖춘 양자 컴퓨터를 위한 CMOS 기반 제어 및 센싱 회로 기술

  • Jusung Kim (Dept. of Electronics Engineering, Hanbat National University) ;
  • Junghwan Han (Dept. of Radio and Information Communication Engineering, Chungnam National University) ;
  • Jae-Won Nam (Dept. of Electronic Engineering, SeoulTech) ;
  • Kunhee Cho (School of Electronics Engineering and School of Electronic and Electrical Engineering, Kyungbook National University)
  • Received : 2022.12.28
  • Accepted : 2023.01.23
  • Published : 2023.03.31

Abstract

The current circuit technology that individually connects each qubit to a control circuit at room temperature has limitations in achieving scalability and reliability of a quantum computer. With the advent of cryogenic CMOS interconnect electronics, it is expected to dramatically improve the interconnect complexity, system reliability and size, and price. In this paper, we introduce the CMOS integrated sensing and control technology platform overcoming the problems caused by the fragile and sensitive characteristics of qubit.

각각의 큐빗(qubit)을 개별적으로 상온의 제어 회로에 연결하는 현재의 회로 기술은 양자 컴퓨터의 확장성, 신뢰성을 갖추는 데 있어 한계를 가지고 있으며, 집적도 측면에서 극저온의 CMOS 기술 기반 인터커넥트 회로 기술을 통해 기존 기술 대비 인터커넥트의 복잡도, 시스템 안정도 및 사이즈, 그리고 가격 경쟁력을 획기적으로 개선할 수 있을 것으로 기대되고 있다. 외부의 전기적 자극에 민감하며 양자 상태를 일정 시간 이상 유지할 수 없는 큐빗의 특성으로 인한 문제를 극복하고, 확장성과 신뢰성을 양자 컴퓨터 실현을 위한 CMOS 기술 기반 집적화된 센싱 및 제어 회로 기술에 대해 소개한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korean Government (MIST) (No. 2022R1A4A3029433)

References

  1. R. P. Feynman, "Simulating physics with computers," Int. J. Theoretical. Physics, vo.21, no.6, pp.467-488, 1982. DOI: 10.1007/BF02650179
  2. P. W. Shor, "Polynomial-time algorithms for prime factorization and discretr logarithms on a quantum computer," SIAM J. Computer, vol.26, no.5, pp.1484-1509, 1997. DOI: 10.1137/S0097539795293172
  3. L. K. Grover, "A Fast quantum mechanical algorithm for database search," Proceedings, 28th Annual ACM Symposium on the theory of computing, p.212, 1996. DOI: 10.48550/arXiv.quant-ph/9605043
  4. F. Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, no.7779, pp.505-510,
  5. "Advance quantum computing-quantum starts here," http://www.ibm.com/ibm/quantum
  6. J. P. G. Van Diijk et al., "Impact of classical control electronics qubit fidelity," Phys. Rev. Applied 12, 044054, 2019. DOI: 10.1103/PhysRevApplied.12.044054
  7. K. Kang et al., "A Cryo-CMOS Controller IC with Fully Integrated Frequency Generators for Superconducting Qubits," in IEEE International Solid-State Circuits Conference (ISSCC), pp.1-3, 2022. DOI: 10.1109/ISSCC42614.2022.9731574
  8. K. Kang et al., "A Cryogenic Controller IC for Superconducting Qubits with DRAG Pulse Generation by Direct Synthesis without Using Memory," in IEEE International Solid-State Circuits Conference (ISSCC), pp.1-3, 2023.
  9. J. P. G. Van Dijk et al., "A scalable cryo-CMOS controller for the wideband frequency-multiplexed control of spin qubits and transmons," IEEE J. Solid-State Circuits, vol.55, no.11, pp.2930-2946, 2020. DOI: 10.1109/JSSC.2020.3024678
  10. J. P. G. Van Dijk et al., "Cryo-CMOS for analog/mixed-signal circuits and systems," 2020 IEEE Custom Integrated Circuits Conference (CICC), pp.1-8, 2020. DOI: 10.1109/CICC48029.2020.9075882