References
- N. H. Khan, S. M. Alam and S. Hassoun, "Power Delivery Design for 3-D ICs Using Different Through-Silicon Via (TSV) Technologies", IEEE Trans. VLSI systems, 19(4), 647 (2011). https://doi.org/10.1109/TVLSI.2009.2038165
- R. S. List, C. Webb and S. E. Kim, "3D Wafer stacking technology", Proc of AMC, 29 (2002).
- R. Plieninger, M. Dittes and K. Pressel, "Modern IC packaging trends and their reliability implications", Microelectron. Reliab., 1868 (2006).
- ITRS from http://www.itrs.net
- R. Bhooshan and B. P Rao, "Optimum IR Drop Models for Estimation of Metal Resource Requirements for Power Distribution Network", IFIP on VLSI, 292 (2007).
- M. Ketkar and E. Chiprout, "A microarchitecture based framework for pre- and post-silicon power delivery analysis", Microarchitecture, 42, 179 (2009).
- N. H. Khan, S. M. Alam and S. Hassoun, "System level comparison of power delivery design for 2D and 3D ICs 3D System Integration", IEEE 3DIC, 1 (2009).
- B. Amelifard and M. Pedram, "Optimal Selection of Voltage Regulator Modules in a Power Delivery Network", IEEE DAC, 168 (2007).
- M. Budnik and K. Roy, "A Power Delivery and Decoupling Network Minimizing Ohmic Loss and Supply Voltage Variation in Silicon Nanoscale Technologies", IEEE Trans. VLSI Systems, 14(12), 1336 (2006).
- C. Wang, H. Cheng, C. Chiu, C. Hung and C. Kuo, "Through co-design to optimize power delivery distribution system using embedded discrete de-coupling capacitor", IEEE CPMT, 1 (2010).
- J. Sun, J. Q. Lu, D. Giuliano, T. P. Chow, R. J. Gutmann, "3D Power Delivery for Microprocessors and High-Performance ASICs", IEEE APEC, Feb. (2007).
- G. Schrom, P. Hazucha, J. Hahn, V. Kursun, D. Gardner, S. Narendra, T. Karnik and V. De, "Feasibility of Monolithic and 3D-Stacked DC-DC Converters for Microprocessors in 90 nm Technology Generation", ISLPED, 263 (2004).
- G. Huang, M. Bakir, A. Naeemi and H. Chen, J. Mei, "Power delivery for 3D chip stacks: Physical modeling and design implication", IEEE EPEP, 205 (2007).
- M. B. Healy and S. K. Lim, "Distributed TSV Topology for 3-D Power-Supply Networks", IEEE Trans. VLSI systems, 1 (2011).
- S. Kim, B. Martell, D. Ayers, S. List, P. Moon and S. Towle, "Thick metal layer integrated process flow to improve power delivery and mechanical buffering", US Patent No. 6, 977, 435 (2005).
- A. J. McNamara, Y. Joshi and Z. M. Zhang, "Characterization of nanostructured thermal interface materials", Int. J. Therm. Sci., In Press, Available online, November (2011).
- J. Xu and T. S. Fisher, "Enhancement of thermal interface materials with carbon nanotube arrays", Int. J. Heat Mass Transf., 49(9-10), 1658 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.039
- A. Hamdan, A. McLanahan, R. Richards and C. Richards, "Characterization of a liquid-metal microdroplet thermal interface material", Exp. Therm. Fluid Sci., 35(7), 1250 (2011). https://doi.org/10.1016/j.expthermflusci.2011.04.012
- S. N. Paisner, "Nanotechnology and mathematical methods for high-performance thermal interface materials", Global SMT & Packag., 36 (2008).
- H. Shin, H. Lee, J. Bang, S. Yoo, S. Jung and K. Kim, "Variation of Thermal Resistance of LED Module Embedded by Thermal Via", J. Microelectron. Packag. Soc., 17(4), 95 (2010).
- W. S. Lee, Y. W. Ko, C. S. Yoo, K. C. Kim and J. C. Park, "A Study on the Thermal Behavious of Via Design in the Ceramic Package", J. Microelectron. Packag. Soc., 10(1), 39 (2003).
- J. Darabi and K. Ekula, "Development of a chip-integrated micro cooling device", Microelectronics, 34(11), 1067 (2003). https://doi.org/10.1016/j.mejo.2003.09.010
- Y. M. Hung and Q. Seng, "Effects of geometric design on thermal performance of star-groove micro-heat pipes", Int. J. Heat Mass Transf., 54(5-6), 1198 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.070
- J. Vaes, W. Dehaene, E. Beyne and Y. Travaly, "Integration challenges of copper Through Silicon Via (TSV) metallization for 3D-stacked IC integration", Microelectron. Eng., 88(50, 745 (2011). https://doi.org/10.1016/j.mee.2010.06.026
- D. Kearney, T. Hilt and P. Pham, "A liquid cooling solution for temperature redistribution in 3D IC architectures", Microelectron., In Press, Available online, June (2011).
- F. Schindler-Saefkow, O. Wittler, D. May and B. Michel, "Thermal Management in a 3D PCB Package with Water Cooling", IEEE ESTC, 107 (2006).
- R. Hon, S. W. Ricky Lee, S. X. Zhang and C. K. Wong, "Multi-Stack Flip Chip 3D Packaging with Copper Plated Through-Silicon Vertical Interconnection", IEEE EPTC, 384 (2005).
- D. Sekar, C. King, B. Dang, T. Spencer, H. Thacker, P. Joseph, M. Bakir and J. Meindl, "A 3D-IC Technology with Integrated Microchannel Cooling", IEEE IITC, 13 (2008).
- C. R. King, Jr., J. Zaveri, M. S. Bakir and J. D. Meindl, "Electrical and Fluidic C4 Interconnections for Inter-layer Liquid Cooling of 3D ICs", IEEE ECTC, 1674 (2010).
- K. W. Yan, R. W. Johnson, R. Stapleto and K. Ghosh, "Double Bump Flip-Chip Assembly", IEEE Trans. EPM 29(2), 119 (2006).
- M. Topper, V. Glaw, P. Coskina, J. Auersperg, K. Samulewicz, M. Lange, C. Karduck, S. Fehlberg, O. Ehrmann and H. Reichl, "Wafer Level Package using Double Balls", Int. Sym. APM, 198 (2000).
- B. Keser, B. Yeung, J. White and T. Fang, "Encapsulated double- bump WL-CSP: design and reliability", IEEE ECTC 35 (2001).
Cited by
- Development of Cu CMP process for Cu-to-Cu wafer stacking vol.20, pp.4, 2013, https://doi.org/10.6117/kmeps.2013.20.4.081
- Characterization of flip chip bonded structure with Cu ABL power bumps vol.54, pp.8, 2014, https://doi.org/10.1016/j.microrel.2014.03.022