• Title/Summary/Keyword: Fermat

Search Result 54, Processing Time 0.02 seconds

A Consideration on Verification and Extension of Fermat's Factorization (페르마 인수분해 방법의 확장과 검증에 대한 고찰)

  • Jung, Seo-Hyun;Jung, Sou-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.3
    • /
    • pp.3-8
    • /
    • 2010
  • There are some efficient brute force algorithm for factorization. Fermat's factorization is one of the way of brute force attack. Fermat's method works best when there is factor near the square-root. This paper shows that why Fermat's method is effective and verify that there are only one answer. Because there are only one answer, we can start Fermat's factorization anywhere. Also, we convert from factorization to finding square number.

FERMAT-TYPE EQUATIONS FOR MÖBIUS TRANSFORMATIONS

  • Kim, Dong-Il
    • Korean Journal of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • A Fermat-type equation deals with representing a nonzero constant as a sum of kth powers of nonconstant functions. Suppose that $k{\geq}2$. Consider $\sum_{i=1}^{p}\;f_i(z)^k=1$. Let p be the smallest number of functions that give the above identity. We consider the Fermat-type equation for MAobius transformations and obtain $k{\leq}p{\leq}k+1$.

ON THE STABILITY OF RECIPROCAL-NEGATIVE FERMAT'S EQUATION IN QUASI-β-NORMED SPACES

  • Kang, Dongseung;Kim, Hoewoon B.
    • The Pure and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • In this paper we introduce the reciprocal-negative Fermat's equation induced by the famous equation in the Fermat's Last Theorem, establish the general solution in the simplest cases and the differential solution to the equation, and investigate, then, the generalized Hyers-Ulam stability in a $quasi-{\beta}-normed$ space with both the direct estimation method and the fixed point approach.

FERMAT'S EQUATION OVER 2-BY-2 MATRICES

  • Chien, Mao-Ting;Meng, Jie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.609-616
    • /
    • 2021
  • We study the solvability of the Fermat's matrix equation in some classes of 2-by-2 matrices. We prove the Fermat's matrix equation has infinitely many solutions in a set of 2-by-2 positive semidefinite integral matrices, and has no nontrivial solutions in some classes including 2-by-2 symmetric rational matrices and stochastic quadratic field matrices.

ON THE EXISTENCE OF SOLUTIONS OF FERMAT-TYPE DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Chen, Jun-Fan;Lin, Shu-Qing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.983-1002
    • /
    • 2021
  • We investigate the non-existence of finite order transcendental entire solutions of Fermat-type differential-difference equations [f(z)f'(z)]n + P2(z)fm(z + 𝜂) = Q(z) and [f(z)f'(z)]n + P(z)[∆𝜂f(z)]m = Q(z), where P(z) and Q(z) are non-zero polynomials, m and n are positive integers, and 𝜂 ∈ ℂ \ {0}. In addition, we discuss transcendental entire solutions of finite order of the following Fermat-type differential-difference equation P2(z) [f(k)(z)]2 + [αf(z + 𝜂) - 𝛽f(z)]2 = er(z), where $P(z){\not\equiv}0$ is a polynomial, r(z) is a non-constant polynomial, α ≠ 0 and 𝛽 are constants, k is a positive integer, and 𝜂 ∈ ℂ \ {0}. Our results generalize some previous results.

ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATION AND FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS

  • CHEN, MIN FENG;GAO, ZONG SHENG
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.447-456
    • /
    • 2015
  • In this paper, we investigate the differential-difference equation $(f(z+c)-f(z))^2+P(z)^2(f^{(k)}(z))^2=Q(z)$, where P(z), Q(z) are nonzero polynomials. In addition, we also investigate Fermat type q-difference differential equations $f(qz)^2+(f^{(k)}(z))^2=1$ and $(f(qz)-f(z))^2+(f^{(k)}(z))^2=1$. If the above equations admit a transcendental entire solution of finite order, then we can obtain the precise expression of the solution.