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THE STABILITY OF GENERALIZED

RECIPROCAL-NEGATIVE FERMAT’S EQUATIONS IN

QUASI-β-NORMED SPACES

DongSeung Kang and Hoewoon Kim∗

Abstract. We introduce a reciprocal-negative Fermat’s equation
generalized with constants coefficients and investigate its stability
in a quasi-β-normed space.

1. Introduction

In many mathematical fields we would be interested in dealing with
the following question suggested first in 1940 by Ulam [32]: Let G1 be a
group and let G2 be a metric group with the metric d(·, ·). Given ε > 0,
does there exist a δ > 0 such that if a function h : G1 → G2 satisfies
the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1 then there is a
homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?
In other words, we consider the conditions under which a mathematical
object satisfying certain properties approximately should be close to the
one satisfying the properties exactly. In 1941, Hyers [8] consider the
case of linear or additive functional equation in a complete metric space,
Banach space, and gave the affirmative but partial solution to Ulam’s
question above. This Hyers’ stability result was first generalized in the
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stability involving a sum of powers of norms by T. Aoki [1], not only con-
stants later. In 1978, Th.M. Rassias [21] provided another generalization
of Hyers Theorem which allows the Cauchy difference to be unbounded.
For the following sections where we show our results of stability let us
define a quasi-β-normed spaces.

Let β be a real number with 0 < β ≤ 1 and K be either R or C . We
will consider the definition and some preliminary results of a quasi-β-
norm on a linear space.

Definition 1.1. Let X be a linear space over a field K . A quasi-β-
norm || · || is a real-valued function on X satisfying the followings:

(1) ||x|| ≥ 0 for all x ∈ X and ||x|| = 0 if and only if x = 0 .
(2) ||λx|| = |λ|β · ||x|| for all λ ∈ K and all x ∈ X .
(3) There is a constant K ≥ 1 such that ||x+ y|| ≤ K(||x||+ ||y||) for

all x, y ∈ X .

The pair (X, || · ||) is called a quasi-β-normed space if || · || is a quasi-β-
norm on X . The smallest possible K is called the modulus of concavity
of || · || . A quasi-Banach space is a complete quasi-β-normed space.

A quasi-β-norm || · || is called a (β, p)-norm (0 < p ≤ 1) if ||x+y||p ≤
||x||p + ||y||p , for all x, y ∈ X . In this case, a quasi-β-Banach space is
called a (β, p)-Banach space; see [3] and [29].

In number theory, Fermat’s Last Theorem states that no three posi-
tive integers a, b, and c satisfy the equation cn = an + bn for any integer
value of n ≥ 2. Taking the reciprocal of each term in the Fermat’s equa-
tion we arrive at the equation 1

cn
= 1

an
+ 1

bn
that is called the reciprocal-

negative Fermat’s equation. Solving the reciprocal equation 1
cn

= an+bn

an bn
,

for cn, we have

cn =
an bn

an + bn

for any integer value of n ≥ 2. In particular, in the case of n = 1 the
above equation should be the harmonic mean of a and b from the well-
known three Pythagorean means; arithmetic mean, geometric mean, and
harmonic mean in geometry.
In 2010, Ravi and Kumar [28] investigated a generalized Hyers-Ulam

stability of the reciprocal functional equation f(x + y) =
f(x)f(y)

f(x) + f(y)
.

Also see [11] for a fixed point approach. With the motivation of the
Pythagorean means Narasimman, Ravi, and Pinelas [20] in 2015 in-

troduced the Pythagorean mean functional equation f(
√
x2 + y2) =
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f(x)f(y)

f(x) + f(y)
for all positive numbers x and y and studied the gener-

alized Hyers-Ulam stability of the equation providing counter-examples
for singular cases. Recently Kang and Kim in [18] introduced the gen-
eralized Pythagorean mean functional equation

(1) f
(

n
√
xn + yn

)
=

f(x)f(y)

f(x) + f(y)

for a positive integer n and investigated the stabilities of the functional
equation in a quasi-β-normed space.

In this paper, we consider the following weighted reciprocal-negative
Fermat’s functional equation:

(2) f
(

n
√
axn + byn

)
=

f(x)f(y)

bf(x) + af(y)

for fixed positive integers n and for all x, y ∈ X with weights a and b. We
are able to see definitely that the generalized Pythagorean mean func-
tional equation (1) given by Kang and Kim above is the special case when
a = b = 1. Due to the reciprocal-negative Fermat’s equation, we still
call the mapping f the reciprocal-negative Fermat’s function. In Section
2 we establish the general solution of the reciprocal-negative Fermat’s
equation (2) in the simplest case and give the differential solution to the
equation (2). In Section 3 we prove the generalized Hyers-Ulam stabil-
ity of the reciprocal-negative Fermat’s equation (2) in a quasi-β-normed
space.

2. General Solution of the Reciprocal-negative Fermat’s func-
tional equation

In this section we establish both the general and differential solution
of the weighted reciprocal-negative Fermat’s equation (2) following the
work by Ger [10] and Kang [18]

Theorem 2.1 (General Solution). Let n ∈ N be an odd integer (or
even integer). The only nonzero solution f : R \ {0} −→ R (or f :

(0,∞) −→ R) with a finite limit of the quotient
f(x)

1/xn
at zero, of the

equation (2) is of the form
c

xn
for a non-zero constant c ∈ R.
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Proof. Letting y = x in (2) we just have f( n
√
a+ bx) =

(
1

a+ b

)
f(x)

for all x ∈ R \ {0} (or x ∈ (0,∞))).

Let us define g(x) =
f(x)

1/x
for all x ∈ R \ {0} (or x ∈ (0,∞)). Then the

limit

lim
x→0

g(x)
1

xn−1

= c

exists for some nonzero c ∈ R and using the definition of f(x) we obtain

g
(

n
√
a+ bx

)
=

1
n
√

(a+ b)n−1
g(x)

for all x ∈ R \ {0} (or x ∈ (0,∞)). By the mathematical induction for
every positive integer k, we also have

(3) g

(
x(

n
√
a+ b

)k
)

= ( n
√

(a+ b)n−1)kg(x)

for all x ∈ R \ {0} (or x ∈ (0,∞)). Therefore we conclude from the
equality (3) that

(4)
g(x)

1

xn−1

=
( n
√

(a+ b)n−1)kg(x)

( n
√

(a+ b)n−1)k
1

xn−1

=

g

(
x

( n
√

(a+ b))k

)
(

( n
√

(a+ b))k

x

)n−1 −→ c

as n→∞. By the definition of g(x) we get the general solution

f(x) =
1

x
g(x) =

1

x

( c

xn−1

)
=

c

xn

for all x ∈ R \ {0} (or x ∈ (0,∞)), which completes the proof.

Now we consider the differentiable solution of the reciprocal-negative
Fermat’s functional equation (2) as we suggested. For simplicity we will
assume the case of an odd integer n ∈ N (we can prove the even case
similarly).

Theorem 2.2 (Differential Solution). Let f : (0,∞) −→ R be con-
tinuously differentiable function with the derivative f ′(x) 6= 0 for all
x ∈ (0,∞). Then f is a solution to the reciprocal-negative Fermat’s
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equation (2) if and only if there exists a nonzero constant c ∈ R such

that f(x) =
c

xn
for all x ∈ (0,∞).

Proof. A simple computation of differentiation of the equation (2)
with respect to x on both sides gives

(5) f ′( n
√
axn + byn)

(
x

n
√
axn + byn

)n−1
=

f ′(x)(f(y))2

(bf(x) + af(y))2

for all x, y ∈ (0,∞). Substituting y = x in the equation (2) and the
equation (5) above, respectively, we have

(6) f(
n
√
a+ bx) =

(
1

a+ b

)
f(x)

and

(7) f ′(
n
√
a+ bx) =

1

(a+ b)
n+1
n

f ′(x)

for all x ∈ (0,∞). Letting y = n

√
b+1
b
x in (5) again and applying (6) and

(7) we can have

(8) f ′(
n
√
a+ b+ 1x) =

1

(a+ b+ 1)
n+1
n

f ′(x)

for all x ∈ (0,∞). Both equations (7) and (8) gives
(9)

f ′((
n
√
a+ b)l(

n
√
a+ b+ 1)mx) =

1

((a+ b)
n+1
n )l((a+ b+ 1)

n+1
n )m

f ′(x)

for all integers l and m. It can be easily proved that the set {((a +

b)
n+1
n )l((a+ b+ 1)

n+1
n )m : l,m ∈ Z} is dense in (0,∞) for fixed constants

a and b. Since we assume that the function f ′ is continuous we derive
the following first order ordinary differential equation

(10) f ′(λ) = f ′(1)
1

λn+1

for λ ∈ (0,∞). Therefore, the solution of the equation should be f(x) =
c

xn
+ d for some constants c and d for x ∈ (0,∞). It is also obvious that

the constant d should be zero since f( n
√
a+ bx) =

(
1

a+ b

)
f(x) and it

completes the proof.
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3. Stability of a Reciprocal-negative Fermat’s functional equa-
tion

We assume that in this entire section X is a linear space and Y a
quasi-β-Banach space with a quasi-β-norm || · ||Y . Let also K be the
modulus of concavity of || · ||Y . In this section we will investigate the
generalized Hyers-Ulam stability problem for the functional equation (2)
as we suggested. For a given mapping f : X → Y and a fixed positive
integer n , we denote

Dnf(x, y) := f
(

n
√
axn + byn

)
− f(x)f(y)

bf(x) + af(y)

for all x, y ∈ X and R+ := [0,∞), i.e., the set of all nonnegative real
numbers where the constants a and b are nonzero real numbers.

Theorem 3.1. Assume that there exists a function φ : X ×X → R+

for which a function f : X → Y satisfies

(11) ||Dnf(x, y)||Y ≤ φ(x, y)

and also suppose that the series
∑∞

j=0((a+b)βK)jφ(( n
√
a+ b)jx, ( n

√
a+ b)jy)

converges for all x, y ∈ X . Then there will be a unique reciprocal-
negative Fermat’s function R : X → Y which satisfies the equation (2)
and the following inequality

(12) ||f(x)−R(x)||Y ≤
∞∑
j=0

((a+ b)βK)j+1φ((
n
√
a+ b)jx, (

n
√
a+ b)jx) ,

for all x ∈ X.

Proof. On letting x = y in the equation (11), we have

||Dnf(x, x)||Y = || f(x)

a+ b
− f(

n
√
a+ bx)||Y ≤ φ(x, x)

or,

(13) ||f(x)− (a+ b)f(
n
√
a+ bx)||Y ≤ (a+ b)βφ(x, x)

for all x ∈ X . Letting m be a fixed positive integer we note that putting
x = ( n

√
a+ b)mx and multiplying by (a+ b)mβ in the inequality (13), we
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can obtain

(14)
||(a+ b)mf((

n
√
a+ b)mx)− (a+ b)m+1f((

n
√
a+ b)m+1x)||Y

≤ (a+ b)(m+1)βφ((
n
√
a+ b)mx, (

n
√
a+ b)mx)

for all x ∈ X. By the mathematical induction, we conclude the following
inequality:

(15)

||f(x)− (a+ b)mf((
n
√
a+ b)mx)||Y

≤
m−1∑
j=0

((a+ b)βK)j+1φ((
n
√
a+ b)jx, (

n
√
a+ b)jx)

for any positive integer m and for all x ∈ X . In addition, for all positive
integers s and t with s > t , we have

(16)

||(a+ b)tf((
n
√
a+ b)tx)− (a+ b)sf((

n
√
a+ b)sx)||Y

≤
s−1∑
j=t

((a+ b)βK)j+1φ((
n
√
a+ b)jx, (

n
√
a+ b)jx)

for all x ∈ X. Since we assume that
∑∞

j=0((a+b)βK)jφ(( n
√
a+ b)jx, ( n

√
a+ b)jy)

converges, the right-hand side of the inequality (16) tends to 0 as t→∞ .
Thus we just say that {(a + b)mf(( n

√
a+ b)mx)} is a Cauchy sequence

in the quasi-β-Banach space Y . Thus we are able to let

R(x) = lim
m→∞

(a+ b)mf((
n
√
a+ b)mx)

for each x ∈ X. Now, we will show that R(x) is the solution to the
reciprocal-negative Fermat’s equation (2). For a positive integer m let-
ting x = ( n

√
a+ b)mx and y = ( n

√
a+ b)my and multiplying by (a+ b)mβ

in the inequality (11), we get

(a+ b)mβ||Dnf((
n
√
a+ b)mx, (

n
√
a+ b)my)||Y

= (a+ b)mβ||f((
n
√
a+ b)m n

√
axn + byn)− f(( n

√
a+ b)mx)f(( n

√
a+ b)my)

bf(( n
√
a+ b)mx) + af(( n

√
a+ b)my)

||Y

≤ ((a+ b)βK)mφ((
n
√
a+ b)mx, (

n
√
a+ b)my)

for all x , y ∈ X. Letting m tend to the infinity, m→∞ , R(x) satisfies
(2) for all x, y ∈ X , that is, R(x) is the reciprocal-negative Fermat’s
function as the solution to it. Also, the inequality (15) implies the
inequality (12).
Now, we finally have to show the uniqueness of the reciprocal-negative
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Fermat’s function R(x) . In order to do that we assume that there exists
r : X → Y satisfying (2) and (12). Then we can estimate

||R(x)− r(x)||Y = (a+ b)mβ||R((
n
√
a+ b)mx)− r(( n

√
a+ b)mx)||Y

≤ K(a+ b)mβ
(
||R((

n
√
a+ b)mx)− f(

n
√
a+ b)mx)||Y

+||r(( n
√
a+ b)mx)− f(

n
√
a+ b)mx)||Y

)
≤ 2K1−m

∞∑
j=0

((a+ b)βK)j+m+1φ((
n
√
a+ b)j+mx, (

n
√
a+ b)j+mx)

for all x ∈ X . By letting m → ∞ , we just have the uniqueness of the
reciprocal-negative Fermat’s function R(x) that completes the proof.

Now let us present a counterpart of Theorem 3.1 by correcting the
approximate f(x) in (11) by scaling-down:

Theorem 3.2. Suppose that there exists a mapping φ : X×X → R+

for which a mapping f : X → Y satisfies

(17) ||Dnf(x, y)||Y ≤ φ(x, y)

and the series
∑∞

j=0

(
K

(a+ b)β

)j
φ(( n
√
a+ b)−jx, ( n

√
a+ b)−jy) converges

for all x, y ∈ X . Then there exists a unique reciprocal-negative Fermat’s
function R : X → Y which satisfies the equation (2) and the inequality
(18)

||f(x)−R(x)||Y ≤
∞∑
j=1

(
1

a+ b

)j−1
Kjφ((

n
√
a+ b)−jx, (

n
√
a+ b)−jx) ,

for all x ∈ X .

Proof. The proof can easily obtained by starting with the replacement

x = y =
x

n
√
a+ b

in (17) as we did in Theorem 3.1.

Now we have the following Hyers-Ulam-Rassias type stability of the
functional equation (2).

Corollary 3.3. Let X be a quasi-β normed space with a norm

|| · || and take a constant p >

(
n

β

)(
lnK

ln(a+ b)
− n

)
. Suppose that
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f : X → Y satisfies

(19) ||Dnf(x, y)||Y ≤ c(||x||p + ||y||p)

for all x, y ∈ X with a nonnegative constant c. Then there exists a
unique function R : X → Y such that

(20) ||f(x)−R(x)||Y ≤
(

2c(a+ b)(βp/n)+βK

(a+ b)(βp/n)+β −K

)
||x||p

for each x ∈ X.

Proof. Just replacing φ(x, y) = c(||x||p + ||y||p) in Theorem 3.2 com-
pletes the proof.

Remark 3.4. By the property of stability of the reciprocal-negative
Fermat’s equation (2) from Theorem 3.1 and 3.2 we also get the corre-
sponding result to Corollary 3.3 as a consequence of Theorem 3.1, i.e.,

(21) ||f(x)−R(x)||Y ≤
(

2c(a+ b)−(βp/n)−βK

(a+ b)−(βp/n)−β −K

)
||x||p

for p >

(
n

β

)(
− lnK

ln 2
− n

)
.

Remark 3.5. In physics a weighted parallel circuit with two resistors
would be an application of the reciprocal-negative Fermat’s equation (2).
The following law is well-know from physics: The inverse of total resis-
tance r of the circuit is sum of the inverses of the individual resistances
r1 and r2,

1

r
=

1

r1
+

1

r2
or

r =
r1r2
r1 + r2

Take r1 =
b

xn
and r2 =

a

yn
for a weighted parallel circuit with weights a

and b for two resistors r1 and r2, respectively, leads us to have

(22) r =

b
xn

a
yn

b
xn

+ a
yn

.
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It is well-known that the electric conductance is reciprocal to the re-
sistance and we, thus, have the total conductance g of the circuit as

g =
xn

b
+
yn

a
. From the equation (22) we can have

(23)
1

g
=

b
xn

a
yn

b
xn

+ a
yn

,

that is,

(24) 1/g =
1

xn/b+ yn/a
=

b
xn

a
yn

b
xn

+ a
yn

,

which is exactly the reciprocal-negative Fermat’s equation (2) if f(x) =
c

xn
for some constant c and the stability of this circuit problem can play

an important role in physics as we showed earlier.
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