Browse > Article
http://dx.doi.org/10.4134/BKMS.b171112

THE GENERALIZED FERMAT TYPE DIFFERENCE EQUATIONS  

Liu, Kai (Department of Mathematics Nanchang University)
Ma, Lei (Department of Mathematics Nanchang University)
Zhai, Xiaoyang (Dongfang College Shandong University of Finance and Economics)
Publication Information
Bulletin of the Korean Mathematical Society / v.55, no.6, 2018 , pp. 1845-1858 More about this Journal
Abstract
This paper is to consider the generalized Fermat difference equations with different types which ever considered by Li [14], Ishizaki and Korhonen [9], Zhang [26] and Liu [15-18], respectively. Some new observations and results on these equations will be given.
Keywords
Fermat difference equation; meromorphic function; finite order;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. N. Baker, On a class of meromorphic functions, Proc. Amer. Math. Soc. 17 (1966), 819-822.   DOI
2 Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic f(z + ${\eta}$) and difference equations in the complex plane, Ramanujan. J. 16 (2008), 105-129.   DOI
3 F. Gross, On the equation $f^n$ + $g^n$ = 1, Bull. Amer. Math. Soc. 72 (1966), 86-88.   DOI
4 F. Gross, On the functional equation $f^n$ + $g^n$ = $h^n$, Amer. Math. Monthly 73 (1966), 1093-1096.   DOI
5 G. G. Gundersen, Complex functional equations, in Complex differential and functional equations (Mekrijarvi, 2000), 21-50, Univ. Joensuu Dept. Math. Rep. Ser., 5, Univ. Joensuu, Joensuu, 2003.
6 G. G. Gundersen and W. K. Hayman, The strength of Cartan's version of Nevanlinna theory, Bull. London Math. Soc. 36 (2004), no. 4, 433-454.   DOI
7 R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
8 R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298.   DOI
9 K. Ishizaki and R. Korhonen, Meromorphic solutions of algebraic difference equations, Constr Approx (2017); https://doi.org/10.1007/s00365-017-9401-7.   DOI
10 C.-C. Yang and P. Li, On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math. (Basel) 82 (2004), no. 5, 442-448.   DOI
11 C.-C. Yang and H.-X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
12 P. Li and C.-C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J. 18 (1995), no. 3, 437-450.   DOI
13 K.-W. Yu and C.-C. Yang, A note for Waring's type of equations for the ring of meromorphic functions, Indian J. Pure Appl. Math. 33 (2002), no. 10, 1495-1502.
14 J. Zhang, On some special difference equations of Malmquist type, Bull. Korean. Math. Soc. 55 (2018), no. 1, 51-61.   DOI
15 N. Toda, On the functional equation ${\Sigma}_{i=0}^pa_if^{n_i}_i$ = 1, Tohoku Math. J. (2) 23 (1971), 289-299.   DOI
16 D.-I. Kim, Waring's problem for linear polynomials and Laurent polynomials, Rocky Mountain J. Math. 35 (2005), no. 5, 1533-1553.   DOI
17 R. Korhonen and Y. Y. Zhang, Existence of meromorphic solutions of first order difference equations, arXiv:1708.07647.
18 I. Lahiri and K.-W. Yu, On generalized Fermat type functional equations, Comput. Methods Funct. Theory 7 (2007), no. 1, 141-149.   DOI
19 N. Li, On the existence of solutions of a Fermat-type difference equation, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 2, 523-549.   DOI
20 K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl. 359 (2009), no. 1, 384-393.   DOI
21 K. Liu, T. Cao, and H. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math. (Basel) 99 (2012), no. 2, 147-155.   DOI
22 K. Liu and L. Yang, On entire solutions of some differential-difference equations, Comput. Methods Funct. Theory 13 (2013), no. 3, 433-447.   DOI
23 K. Liu and L. Z. Yang, A note on meromorphic solutions of Fermat types equations, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) 1 (2016), 317-325.
24 F. Lu and Q. Han, On the Fermat-type equation $f^3(z)$ + $f^3(z+c)$ = 1, Aequationes Math. 91 (2017), no. 1, 129-136.   DOI
25 P. Montel, Lecons sur les familles normales de fonctions analytiques at leurs applications, Gauthier-Villars, Paris, (1927), 135-136 (French).
26 T. W. Ng and S. K. Yeung, Entire holomorphic curves on a Fermat surface of low degree, arXiv:1612.01290 (2016).