Browse > Article
http://dx.doi.org/10.14317/jami.2021.405

ON CONGRUENCES INVOLVING EULER POLYNOMIALS AND THE QUOTIENTS OF FERMAT  

JANG, DOUK SOO (Division of Mathematics, Science, and Computers, Kyungnam University)
Publication Information
Journal of applied mathematics & informatics / v.39, no.3_4, 2021 , pp. 405-417 More about this Journal
Abstract
The aim of this paper is to provide the residues of Euler polynomials modulo p2 in terms of alternating sums of like powers of numbers in arithmetical progression. Also, we establish the analogue of a classical congruence of Lehmer.
Keywords
Euler polynomials; congruences; Fermat quotient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.W.L. Glaisher, On the residues of the sums of the inverse powers of numbers in arithmetical progression, Q. J. Math. 32 (1901), 271-305.
2 L. Carlitz, A note on Euler numbers and polynomials, Nagoya Math. J. 7 (1954), 35-43.   DOI
3 L. Carlitz and J. Levine, Some problems concerning Kummer's congruences for the Euler numbers and polynomials, Trans. Amer. Math. Soc. 96 (1960), 23-37.   DOI
4 G. Eisenstein, Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhangen und durch gewisse lineare Funktional-Gleichungen definiert werden, Bericht. K. Preuss. Akad. Wiss. Berlin 15 (1850), 36-42.
5 L. Euler, Institutiones Calculi Differentialis, Petersberg, 1755.
6 A. Friedmann and J. Tamarkine, Quelques formules concernent la theorie de la function [x] et des nombres de Bernoulli, J. Reine Angew. Math. 137 (1909), 146-156.
7 J.W.L. Glaisher, On the residues of rp-1 to modulus p2, p3, etc, Quart. J. 32 (1900), 1-27.
8 M.-S. Kim, On Euler numbers, polynomials and related p-adic integrals, J. Number Theory 129 (2009), 2166-2179.   DOI
9 E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938), 350-360.   DOI
10 M. Lerch, Zur Theorie des Fermatschen Quotienten (ap-1 - 1)/p = q(a), Math. Ann. 60 (1905), 471-490.   DOI
11 R. Mestrovic, Congruences involving the Fermat quotient, Czechoslovak Math. J. 63 (2013), 949-968.   DOI
12 J.L. Raabe, Zuruckfuhrung einiger Summen und bestmmtiem Integrale auf die Jacob-Bernoullische Function, J. Reine Angew. Math. 42 (1851) 348-367.
13 Z.-W. Sun, Introduction to Bernoulli and Euler polynomials, A Lecture Given in Taiwan on June, 2002, http://maths.nju.edu.cn/zwsun/BerE.pdf.
14 J.J. Sylvester, Sur une propriete des nombres premiers qui se ratache au theoreme de Fermat, C. R. Acad. Sci. Paris 52 (1861), 161-163.
15 S.S. Wagstaff, Jr., Prime divisors of the Bernoulli and Euler numbers, Number theory for the millennium, III (Urbana, IL, 2000), A.K. Peters, Natick, MA, 2002.