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ON CONGRUENCES INVOLVING EULER POLYNOMIALS
AND THE QUOTIENTS OF FERMAT

DOUK SOO JANG

Abstract. The aim of this paper is to provide the residues of Euler poly-
nomials modulo p2 in terms of alternating sums of like powers of numbers
in arithmetical progression. Also, we establish the analogue of a classical
congruence of Lehmer.
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1. Introduction

The associated Euler number Em(0) (m = 0, 1, 2, . . .) is defined by means of
the following generating function

2

et + 1
=

∞∑
m=0

Em(0)

m!
tm (1)

(see [1, 2, 8, 13]). Moreover, we can write

2

et + 1
=

(
1− 1− et

2

)−1

=

∞∑
i=0

(
1− et

2

)i

, (2)

which converges for |1−et| < 2 and hence small values of t. The first few non-zero
ones are:

E0(0) = 1, E1(0) = −
1

2
, E3(0) =

1

4
, E5(0) = −

1

2
, E7(0) =

17

8
, . . . .

In particular, Em(0)’s are all rational numbers. Since 2
et+1−1 is an odd function

(i.e., if f(t) = f(t), so all of the signs are switched), we see that

Em(0) = 0 for m an even integer greater than or equal to 2. (3)
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The Euler polynomials Em(t) (m = 0, 1, 2, . . .) is defined by

Em(t) =

m∑
i=0

(
m

i

)
Ei(0)t

m−i, (4)

where
(
m
i

)
= n!

i!(m−i)! (see, for details, [13]). The associated Euler number num-
bers and Euler polynomials are classical and important in number theory and
arise in some combinatorial contexts. For example, see E. Lehmer [9], Sun [13],
and Wagstaff [15]. Equation (4) is actually the standard way to define and com-
pute the Euler polynomials inductively. The Euler polynomial Em(t) of degree
m can be rewritten as the unique polynomial solution of the equation

Em(t+ 1) + Em(t) = 2tm, m ≥ 0 (5)
(see [1, 2, 8, 13]). Also, Euler polynomials satisfy the identity

Em(1− t) = (−1)mEm(t), (6)
which follows from (1) and (4). In particular, we have

Em = 2mEm

(
1

2

)
, (7)

where Em are the ordinary Euler numbers (see [12, 13, 15]), and as a result of (6),
we must have Em = Em

(
1
2

)
= 0 whenever m is odd. Therefore Em ̸= Em(0),

in fact [13, p. 374, (2.1)]

Em(0) =
2

m+ 1
(1− 2m+1)Bm+1, (8)

where Bm means the Bernoulli numbers and m ≥ 0.
Following work of Friedmann and Tamarkin [5], E. Lehmer [9] considered

Bernoulli numbers and polynomials modulo primes and prime powers, and showed
many identities and combinatorial interpretations involving harmonic numbers.
See E. Lehmer [9] for connections between Fermat quotients and Fermat’s last
theorem.

The motivation of the paper is to generalize the identities of E. Lehmer [9]
on Euler polynomials. The results are presented in Section 2 and Section 3, and
our proof is based on certain arithmetical identities and congruences for some
alternating sums.

2. Results

The following result concerning Euler polynomials was recently presented in
[8, p. 2169, Lemma 2.1].

Lemma 2.1. Let m ≥ 0 be integers. Then

Em(t) =

m∑
i=0

(
1

2

)k k∑
j=0

(
k

j

)
(−1)j(j + t)m. (9)
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In particular, if m ≥ 0 be integers, then
2mEm(t) ∈ Z[t] and 2mEm(0) ∈ Z. (10)

This means that we have the following relationship between the ordinary Euler
numbers E2n and the associated Euler numbers Ei(0) where i = 0, 1, . . . , 2n:

E2n =

2n∑
i=0

(
2n

i

)
Ei(0) ∈ Z.

Remark 2.1. We easily see that Em(0) will not contain primes p in the denom-
inator when p > 2.

Since Euler polynomials satisfy many properties that are similar to those that
Bernoulli polynomials satisfy, we would expect a result similar to Kummer’s
congruence for associated Euler numbers Em(0). We have the following result.

Lemma 2.2. For integers m ≥ 1 and primes p ≥ 3, we have
Em+p−1(0) ≡ Em(0) (mod p). (11)

Proof. When m and n are positive integers, it follows at once from (4) that
Em(n) ≡ Em(0) (mod n). (12)

Let n be an odd integer with n ≥ 1. Moreover it is easy to see that

Em(0) + Em(n) =

n−1∑
l=0

(
(−1)lEm(l)− (−1)l+1Em(l + 1)

)
. (13)

Using (5) and (13) we have

Em(0) + Em(n) = 2

n−1∑
l=0

(−1)llm. (14)

For any odd prime p, by (12), (14) yields the congruence

Em+p−1(0) =

n−1∑
l=0

(−1)llm+p−1 (mod n). (15)

Consequently from Fermat’s little Theorem, i.e., lm+p−1 ≡ lm (mod p) for 0 ≤
l < p, for n = p, (15) imply Kummer’s congruence for Em(0):

Em+p−1(0) ≡ Em(0) (mod p).

This completes the proof. �

Remark 2.2. Euler, on page 499 in [4], introduced Euler polynomials to eval-
uate the alternating sum (14). Carlitz and Levine [2] have also investigated
Kummer’s congruence for ordinary Euler numbers (7). See Wagstaff, Jr. [15,
Theorem 4] for a simple proof of Kummer’s congruence for ordinary Euler num-
bers.
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Theorem 2.3. For integers n ≥ 1 and primes p ≥ 3, we have

[ pn ]∑
r=1

(−1)r−1(p− rn)2k ≡ n2k

2

{
p
2k

n
E2k−1 (0) + (−1)[

p
n ]+1E2k

( s
n

)}
(mod p3)

(16)
and
[ pn ]∑
r=1

(−1)r−1(p−rn)2k+1 ≡ n2k+1

2

{
E2k+1 (0) + (−1)[

p
n ]+1E2k+1

( s
n

)}
(mod p2),

(17)
where s is the least positive residue of p (mod n) and k ≥ 1.

Proof. If in (5), alternating, adding and subtracting this identity with t = (p−
rn)/n, r = 1, 2, . . . ,

[
p
n

]
, where [x] is the greatest integer not exceeding x, n and

p are positive integers with n < p, for each case, gives the formula

Em

( p
n

)
+ (−1)[

p
n ]+1Em

( p
n
−
[ p
n

])
= 2

[ pn ]∑
r=1

(−1)r−1

(
p− rn
n

)m

.

This implies that

[ pn ]∑
r=1

(−1)r−1(p− rn)m =
nm

2

{
Em

( p
n

)
+ (−1)[

p
n ]+1Em

( s
n

)}
, (18)

where we have written s for the least positive residue of p modulo n. Setting
m = 2k, k ≥ 1 and t = p/n, where p is an odd prime > n, in (4), by (3) and
(10), we get the congruence

E2k

( p
n

)
=

2k∑
r=0

(
2k

r

)
Er(0)

( p
n

)2k−r

≡ 2k
( p
n

)
E2k−1(0) (mod p3). (19)

Similarly we find for m = 2k + 1 with k ≥ 1

E2k+1

( p
n

)
≡ E2k+1(0) + k(2k + 1)E2k−1(0)

( p
n

)2
(mod p3), (20)

since E2k(0) = 0 with k ≥ 1. Substituting these results into (18), we obtain the
theorem. �

Corollary 2.4. For integers n ≥ 1 and primes p ≥ 3, we have

[ pn ]∑
r=1

(−1)r−1r2k+1 ≡ −1

2

(
E2k+1(0) + (−1)[

p
n ]+1E2k+1

( s
n

))
+ (−1)[

p
n ]+1 p

2n
(2k + 1)E2k

( s
n

)
(mod p2)

(21)
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and

[ pn ]∑
r=1

(−1)r−1r2k ≡ (−1)[
p
n ]
(
−1

2
E2k

( s
n

)
+
p

n
kE2k−1

( s
n

))
(mod p2), (22)

where s is the least positive residue of p (mod n) and k ∈ N.

Proof. Since

[ pn ]∑
r=1

(−1)r−1(p− rn)m

≡ (−1)mnm


[ pn ]∑
r=1

(−1)r−1rm − pm

n

[ pn ]∑
r=1

(−1)r−1rm−1

 (mod p2),

(23)

congruences (16) and (17) may be combined to give sums of like powers of
numbers less than [p/n] . From (23), we can write

nm
[ pn ]∑
r=1

(−1)r−1rm

≡ (−1)m


[ pn ]∑
r=1

(−1)r−1(p− rn)m − pm
[ pn ]∑
r=1

(−1)r−1(p− rn)m−1

 (mod p2),

(24)
where m > 1. Now we put m = 2k − 1 with k > 1. Then, from (16), (17) and
(24), we have

[ pn ]∑
r=1

(−1)r−1r2k+1 ≡ −1

2

(
E2k+1(0) + (−1)[

p
n ]+1E2k+1

( s
n

))
+ (−1)[

p
n ]+1 p

2n
(2k + 1)E2k

( s
n

)
(mod p2).

(25)

Similarly, for m = 2k with k > 1, we obtain (22). This completes the proof. �

Remark 2.3. Congruences (16) and (17) may be thought of as generalizations of
Glaisher’s results [7] on Euler polynomials, while congruences (21) and (22) give
generalizations of Vandiver’s results on Euler polynomials whenever possible.
Both sets of formulas depend on the evaluation of Em

(
s
n

)
.
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The values of Em

(
s
n

)
can be tabulated as follows:

E2k+1(1) = −E2k+1(0), k ≥ 0,

E2k+1

(
−1

2

)
= −

(
1

2

)2k

, E2k+1

(
1

2

)
= 0, k ≥ 0,

E2k+1

(
1

3

)
= −E2k+1

(
2

3

)
=

1

2

(
1− 1

32k+1

)
E2k+1(0), k ≥ 0,

E2k+1

(
1

4

)
= −E2k+1

(
3

4

)
, k ≥ 0.

(26)

These evaluations of Em

(
s
n

)
are well known.

Example 2.5. It follows readily from (17) and (26) that
(p−1)/2∑

r=1

(−1)r−1(p− 2r)2k+1 ≡ 22kE2k+1(0) (mod p2), (27)

[ p3 ]∑
r=1

(−1)r−1(p− 3r)2k+1

≡ 32k+1

2

{
E2k+1(0)− E2k+1

(
1
3

)
(mod p2) if p ≡ 1 (mod 3)

E2k+1(0) + E2k+1

(
2
3

)
(mod p2) if p ≡ 2 (mod 3)

≡ 32k+1

2

(
E2k+1(0)− E2k+1

(
1

3

))
(mod p2), p > 3,

(28)

[ p4 ]∑
r=1

(−1)r−1(p− 4r)2k+1

≡ 2 · 42k
{
E2k+1(0)− (−1)[

p
4 ]E2k+1

(
1
4

)
(mod p2) if p ≡ 1 (mod 4)

E2k+1(0)− (−1)[
p
4 ]E2k+1

(
3
4

)
(mod p2) if p ≡ 3 (mod 4)

≡ 2 · 42k
(
E2k+1(0)∓ (−1)[

p
4 ]E2k+1

(
1

4

))
(mod p2) if p ≡ ±1 (mod 4), p > 5.

(29)

Example 2.6. Next we will give the results of substituting Em

(
s
n

)
in (21) and

(22) for n = 1 and 2. If n = 1, (21) and (22) are of course the same as (−1)×(17)
and (−1)×(16), respectively. We obtain easily

p∑
r=1

(−1)r−1r2k+1 ≡ −E2k+1(0) (mod p2),

p∑
r=1

(−1)r−1r2k ≡ −pkE2k−1(0) (mod p2).

(30)
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If n = 2, (21) becomes
(p−1)/2∑

r=1

(−1)r−1r2k+1 ≡ −1

2

(
E2k+1(0) + (−1)

p−1
2
p

2
(2k + 1)E2k

(
1

2

))
(mod p2),

(31)
since E2k+1(1/2) = 0 with k ≥ 0. Similarly, (22) becomes

(p−1)/2∑
r=1

(−1)r−1r2k ≡ (−1)
p+1
2

1

2
E2k

(
1

2

)
(mod p2), (32)

while (16) gives
(p−1)/2∑

r=1

(−1)r−1(p−2r)2k ≡ 22k−1

(
pkE2k−1(0) + (−1)

p+1
2 E2k

(
1

2

))
(mod p3),

(33)
where k > 1. Hence, (33) reduces to the congruence

(p−1)/2∑
r=1

(−1)r−1(p− 2r)2k ≡ (−1)
p+1
2

2
E2k (mod p), (34)

where Ek is the kth ordinary Euler numbers (see (7)) and k > 1.

3. Applications

Let p be an odd prime and a an integer not divisible by p. The quotient

qp(a) =
ap−1 − 1

p
(35)

is called the Fermat quotient of p with base a, which is an integer according to
the Fermat Little Theorem. This quotient has been extensively studied because
of its links to numerous question in number theory. A classical congruence, due
to F.G. Eisenstein [3] in 1850, asserts that for a prime p ≥ 3,

qp(2) ≡
1

2

p−1∑
r=1

(−1)r−1 1

r
(mod p), (36)

which was extended in 1861 by J.J. Sylvester [14] and in 1901 by Glaisher [6,
pp. 21–22] as

qp(2) ≡ −
1

2

(p−1)/2∑
r=1

1

r
(mod p). (37)

The above congruence was generalized in 1905 by M. Lerch in the first paper of
substance on Fermat quotients [10] (see [11, pp. 949–950]).
Theorem 3.1. Let t(p− 1) ̸≡ 2 (mod p− 1) and (p, t) = 1. Then

p−1∑
a=1

(−1)aqp(a) ≡ −
1

2
Et(p−1)−1(0) (mod p). (38)
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Proof. Observe that

2

(p−1)/2∑
r=1

(2r − 1)2k =

p−1∑
r=1

r2k +

p−1∑
r=1

(−1)r−1r2k. (39)

As early as 1938, Lehmer [9, (15)] established the following interesting congru-
ence

p−1∑
r=1

r2k ≡ pB2k (mod p2) if 2k ̸≡ 2 (mod p− 1), (40)

where Bk is the kth Bernoulli numbers (see [13]). From (30), (35) and (40), it
follows that

(p−1)/2∑
r=1

(2r − 1)2k ≡ 1

2
(pB2k − pkE2k−1(0)) (mod p2) (41)

if 2k ̸≡ 2 (mod p− 1). Further, in virtue of (35), we obtain that
p−1∑
a=1

(−1)aqp(a) =
p−1∑
a=1

qp(a)− 2

(p−1)/2∑
a=1

(−1)aqp(2a− 1). (42)

Recall ([9, p. 354]) that

at(p−1) = 1 + ptqp(a) (mod p2), (43)

where t ∈ N. Thus by (42) and (43), we have

pt

p−1∑
a=1

(−1)aqp(a)

≡
p−1∑
a=1

(
at(p−1) − 1

)
− 2

(p−1)/2∑
a=1

(
(2a− 1)t(p−1) − 1

)
(mod p2)

≡
p−1∑
a=1

at(p−1) − 2

(p−1)/2∑
a=1

(2a− 1)t(p−1) (mod p2)

≡ p(p− 1)t

2
Et(p−1)−1(0) (mod p2) if t(p− 1) ̸≡ 2 (mod p− 1)

≡ −pt
2
Et(p−1)−1(0) (mod p2) if t(p− 1) ̸≡ 2 (mod p− 1),

(44)

that is,
p−1∑
a=1

(−1)aqp(a) ≡ −
1

2
Et(p−1)−1(0) (mod p) (45)

if t(p− 1) ̸≡ 2 (mod p− 1) and (p, t) = 1, and the proof is completed. �
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Theorem 3.2. For integers k ≥ 1 and primes p ≥ 3, we have
p−1∑
r=1

(−1)r−1r2k+1qp(r) ≡
1

p
(E2k+1(0)− E2k+p(0)) (mod p) (46)

and
p−1∑
r=1

(−1)r−1r2kqp(r) ≡ −
p− 1

2
E2k−1(0) (mod p). (47)

Proof. Now we in a position to transform the above sums into sums involving
Fermat’s quotients by means of the relation

(−1)a−1(am+p−1 − am) = (−1)a−1pamqp(a). (48)
Hence, (48) may be written as

p

p−1∑
r=1

(−1)r−1rmqp(r) =

p−1∑
r=1

(−1)r−1rm+p−1 −
p−1∑
r=1

(−1)r−1rm. (49)

Putting m = 2k + 1 in (49), from (30), we find

p

p−1∑
r=1

(−1)r−1r2k+1qp(r) =

p−1∑
r=1

(−1)r−1r2k+p −
p−1∑
r=1

(−1)r−1r2k+1

≡ E2k+1(0)− E2k+p(0) (mod p2),

(50)

that is,
p−1∑
r=1

(−1)r−1r2k+1qp(r) ≡
1

p
(E2k+1(0)− E2k+p(0)) (mod p), (51)

where k ∈ N. Putting m = 2k in (49), from (30), we find

p

p−1∑
r=1

(−1)r−1r2kqp(r) =

p−1∑
r=1

(−1)r−1r2k+p−1 −
p−1∑
r=1

(−1)r−1r2k

≡ p
(
kE2k−1(0)−

2k + p− 1

2
E2k−1+p−1(0)

)
(mod p2)

≡ p
(
kE2k−1(0)−

2k + p− 1

2
E2k−1(0)

)
(mod p2)

(by (11))

≡ p
(
k − 2k + p− 1

2

)
E2k−1(0) (mod p2),

(52)
that is,

p−1∑
r=1

(−1)r−1r2kqp(r) ≡ −
p− 1

2
E2k−1(0) (mod p), (53)

where k ∈ N. This completes the proof. �
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Theorem 3.3. Let n > 1, α > 1 and p > 3. Then

[ pn ]∑
r=1

(−1)r−1 1

p− nr
≡ nϕ(p

α)−1

2



Eϕ(pα)−1

(
s
n

)
− (−1)[

p
n ]Eϕ(pα)−1(0)

(mod p2) if
[
p
n

]
is odd

−Eϕ(pα)−1

(
s
n

)
+ (−1)[

p
n ]Eϕ(pα)−1(0)

(mod p2) if
[
p
n

]
is even.

(54)

Proof. Also α ∈ N and n > 1. If, by a slight change in notation, we set

[ pn ]∑
r=1

(−1)r−1
( p
n
− r
)m

=



[ pn ]∑
r=1

(−1)r−1
(
s
n + r − 1

)m if
[
p
n

]
is odd

[ pn ]∑
r=1

(−1)r
(
s
n + r − 1

)m if
[
p
n

]
is even

=



[ pn ]−1∑
r=0

(−1)r
(
s
n + r

)m if
[
p
n

]
is odd

[ pn ]−1∑
r=0

(−1)r−1
(
s
n + r

)m if
[
p
n

]
is even,

(55)

then we have
[ pn ]∑
r=1

(−1)r−1 1

p− nr

≡
[ pn ]∑
r=1

(−1)r−1(p− nr)ϕ(p
α)−1 (mod pα)

≡ nϕ(p
α)−1

[ pn ]∑
r=1

(−1)r−1
( p
n
− r
)ϕ(pα)−1

(mod pα)

= nϕ(p
α)−1


[ pn ]−1∑
r=0

(−1)r
(
s
n + r

)ϕ(pα)−1
(mod pα) if

[
p
n

]
is odd

[ pn ]−1∑
r=0

(−1)r−1
(
s
n + r

)ϕ(pα)−1
(mod pα) if

[
p
n

]
is even,

(56)

where ϕ(n) denotes Euler’s totient function. It is well known that (cf. [13])
n−1∑
r=0

(−1)r(t+ r)m =
1

2
(Em(t) + (−1)n−1Em(t+ n)). (57)
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From (56) and (57), it follows that

[ pn ]∑
r=1

(−1)r−1 1

p− nr
≡ nϕ(p

α)−1

2



Eϕ(pα)−1

(
s
n

)
+ (−1)[

p
n ]−1Eϕ(pα)−1

(
s
n +

[
p
n

])
(mod pα) if

[
p
n

]
is odd

−Eϕ(pα)−1

(
s
n

)
+ (−1)[

p
n ]Eϕ(pα)−1

(
s
n +

[
p
n

])
(mod pα) if

[
p
n

]
is even.

(58)
Since Eϕ(pα)−2(0) = 0 with α > 1 and p > 3, we have

Eϕ(pα)−1

( s
n
+
[ p
n

])
= Eϕ(pα)−1

( p
n

)
≡ Eϕ(pα)−1(0) +

p

n
Eϕ(pα)−2(0) (mod p2)

≡ Eϕ(pα)−1(0) (mod p2),

which has the paraphrase

[ pn ]∑
r=1

(−1)r−1 1

p− nr
≡ nϕ(p

α)−1

2



Eϕ(pα)−1

(
s
n

)
− (−1)[

p
n ]Eϕ(pα)−1(0)

(mod p2) if
[
p
n

]
is odd

−Eϕ(pα)−1

(
s
n

)
+ (−1)[

p
n ]Eϕ(pα)−1(0)

(mod p2) if
[
p
n

]
is even,

(59)
where α > 1 and p > 3. This completes the proof. �

Example 3.4. (54) implies that, for n = 2 and 3,
(p−1)/2∑

r=1

(−1)r−1 1

p− 2r
≡ 2ϕ(p

α)−2Eϕ(pα)−1(0) (mod p2), (60)

[ p3 ]∑
r=1

(−1)r−1 1

p− 3r
≡ 3ϕ(p

α)−1

2

(
Eϕ(pα)−1(0)− Eϕ(pα)−1

(
1

3

))
(mod p2),

(61)
where we use the fact that for p > 3,

p ≡ 1 (mod 3)⇔ ∃ even integer k > 1 satisfying p = 3k + 1⇔
[p
3

]
is even,

p ≡ 2 (mod 3)⇔ ∃ odd integer k ≥ 1 satisfying p = 3k + 2⇔
[p
3

]
is odd

and Em(1− t) = (−1)mEm(t).

Example 3.5. By Fermat’s quotients (35), we obtain
1

a
= ap−2 − pqp(a)

a
,
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so that, after a is replaced by p− nr,

p

[ pn ]∑
r=1

(−1)r−1 1

p− nr
qp(p− nr) =

[ pn ]∑
r=1

(−1)r−1(p− nr)p−2 −
[ pn ]∑
r=1

(−1)r−1 1

p− nr
.

(62)
Now, if we write n = 2 in (17), then

(p−1)/2∑
r=1

(−1)r−1(p− 2r)p−2 ≡ 2p−3Ep−2(0) (mod p2), (63)

where we have used E2k+1(1/2) = 0 with k ≥ 0. Next, we put n = 2 in (62) and
use (60), (63), we get

(p−1)/2∑
r=1

(−1)r−1 1

p− 2r
qp(p− 2r)

≡ 1

2p

(
2p−2Ep−2(0)− 2ϕ(p

α)−1Eϕ(pα)−1(0)
)

(mod p),

(64)

where α > 1 and p > 3. Simiarly, the evaluation (62) with n = 3 provides a new
expression for

[ p3 ]∑
r=1

(−1)r−1 1

p− 3r
qp(p− 3r)

by using (28) and (61).
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