DOI QR코드

DOI QR Code

ON CONGRUENCES INVOLVING EULER POLYNOMIALS AND THE QUOTIENTS OF FERMAT

  • JANG, DOUK SOO (Division of Mathematics, Science, and Computers, Kyungnam University)
  • Received : 2021.02.22
  • Accepted : 2021.03.22
  • Published : 2021.05.30

Abstract

The aim of this paper is to provide the residues of Euler polynomials modulo p2 in terms of alternating sums of like powers of numbers in arithmetical progression. Also, we establish the analogue of a classical congruence of Lehmer.

Keywords

References

  1. L. Carlitz, A note on Euler numbers and polynomials, Nagoya Math. J. 7 (1954), 35-43. https://doi.org/10.1017/S0027763000018043
  2. L. Carlitz and J. Levine, Some problems concerning Kummer's congruences for the Euler numbers and polynomials, Trans. Amer. Math. Soc. 96 (1960), 23-37. https://doi.org/10.1090/S0002-9947-1960-0115971-X
  3. G. Eisenstein, Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhangen und durch gewisse lineare Funktional-Gleichungen definiert werden, Bericht. K. Preuss. Akad. Wiss. Berlin 15 (1850), 36-42.
  4. L. Euler, Institutiones Calculi Differentialis, Petersberg, 1755.
  5. A. Friedmann and J. Tamarkine, Quelques formules concernent la theorie de la function [x] et des nombres de Bernoulli, J. Reine Angew. Math. 137 (1909), 146-156.
  6. J.W.L. Glaisher, On the residues of rp-1 to modulus p2, p3, etc, Quart. J. 32 (1900), 1-27.
  7. J.W.L. Glaisher, On the residues of the sums of the inverse powers of numbers in arithmetical progression, Q. J. Math. 32 (1901), 271-305.
  8. M.-S. Kim, On Euler numbers, polynomials and related p-adic integrals, J. Number Theory 129 (2009), 2166-2179. https://doi.org/10.1016/j.jnt.2008.11.004
  9. E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938), 350-360. https://doi.org/10.2307/1968791
  10. M. Lerch, Zur Theorie des Fermatschen Quotienten (ap-1 - 1)/p = q(a), Math. Ann. 60 (1905), 471-490. https://doi.org/10.1007/BF01561092
  11. R. Mestrovic, Congruences involving the Fermat quotient, Czechoslovak Math. J. 63 (2013), 949-968. https://doi.org/10.1007/s10587-013-0064-7
  12. J.L. Raabe, Zuruckfuhrung einiger Summen und bestmmtiem Integrale auf die Jacob-Bernoullische Function, J. Reine Angew. Math. 42 (1851) 348-367.
  13. Z.-W. Sun, Introduction to Bernoulli and Euler polynomials, A Lecture Given in Taiwan on June, 2002, http://maths.nju.edu.cn/zwsun/BerE.pdf.
  14. J.J. Sylvester, Sur une propriete des nombres premiers qui se ratache au theoreme de Fermat, C. R. Acad. Sci. Paris 52 (1861), 161-163.
  15. S.S. Wagstaff, Jr., Prime divisors of the Bernoulli and Euler numbers, Number theory for the millennium, III (Urbana, IL, 2000), A.K. Peters, Natick, MA, 2002.