Commun. Korean Math. Soc. **30** (2015), No. 4, pp. 447–456 http://dx.doi.org/10.4134/CKMS.2015.30.4.447

ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATION AND FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS

Min Feng Chen and Zong Sheng Gao

ABSTRACT. In this paper, we investigate the differential-difference equation

$$(f(z+c) - f(z))^{2} + P(z)^{2}(f^{(k)}(z))^{2} = Q(z),$$

where $P(z),\ Q(z)$ are nonzero polynomials. In addition, we also investigate Fermat type q-difference differential equations

 $f(qz)^2 + (f^{(k)}(z))^2 = 1$ and $(f(qz) - f(z))^2 + (f^{(k)}(z))^2 = 1.$

If the above equations admit a transcendental entire solution of finite order, then we can obtain the precise expression of the solution.

1. Introduction and results

In this paper, we assume that the reader is familiar with standard symbols and fundamental results of Nevanlinna theory [6, 7]. In addition, we use the notation $\sigma(f)$ to denote the order of growth of the meromorphic function f(z). And we denote by S(r, f) any quantify satisfying S(r, f) = o(T(r, f)), as $r \to \infty$, outside of a possible exceptional set of finite logarithmic measure.

Recently, a number of papers (including [2, 3, 8, 14]) have focused on meromorphic solutions of complex difference equations and differential-difference equations. Fermat type functional equations were investigated by Gross [4, 5], Montel [11] and Yang [13]. Yang [13] investigated the Fermat type functional equation

(1.1)
$$a(z)f(z)^{n} + b(z)g(z)^{m} = 1,$$

where a(z), b(z) are small functions with respect to f(z) and obtained the following result.

O2015Korean Mathematical Society

Received May 12, 2015; Revised August 10, 2015.

²⁰¹⁰ Mathematics Subject Classification. 39B32, 34M05, 30D35.

Key words and phrases. differential-difference equation, Fermat type q-difference differential equations, transcendental entire solution, finite order.

This research was supported by the National Natural Science Foundation of China (No: 11171013, 11371225).

Theorem A (See [13]). Let m, n be positive integers satisfying $\frac{1}{m} + \frac{1}{n} < 1$. Then there are no nonconstant entire solutions f(z) and g(z) that satisfy (1.1).

Theorem A implies that there are nonconstant entire solutions with the assumption of m > 2, n > 2 in (1.1). However, when m = n = 2 and g(z) has a specific relationship with f(z) in (1.1), the problem is worth to be considered. Tang and Liao [12] investigated the entire solutions of the following equation

(1.2) $f(z)^2 + P(z)^2 (f^{(k)}(z))^2 = Q(z),$

where P(z), Q(z) are nonzero polynomials.

Liu and Yang $\left[10\right]$ considered the finite order entire solutions of the differential-difference equation

(1.3)
$$f(z+c)^2 + (f^{(k)}(z))^2 = 1$$

In this paper, we consider the entire solutions of the following differentialdifference equation

(1.4)
$$(f(z+c) - f(z))^2 + P(z)^2 (f^{(k)}(z))^2 = Q(z),$$

where P(z), Q(z) are nonzero polynomials, and obtain the following results.

Theorem 1.1. Let P(z), Q(z) be nonzero polynomials. If the differentialdifference equation (1.4) admits a transcendental entire solution of finite order, then $P(z) \equiv A$ (constant), $Q(z) \equiv q_1q_2$ (constant) and k must be an odd. Thus, $f(z) = -\frac{q_1e^{az+b}+q_2e^{-(az+b)}}{4} + c_1$, where $a, b, c, c_1 \in \mathbb{C}$ are constants such that $a^k = \frac{2i}{A}, c = \frac{(2m+1)\pi i}{a}, m \in \mathbb{Z}.$

Corollary 1.1. If P(z), Q(z) are nonconstant polynomials, then there does not exist transcendental entire solution of finite order of the differential-difference equation (1.4).

Corollary 1.2. If P(z), Q(z) are nonzero polynomials and k is an even, then there does not exist transcendental entire solution of finite order of the differential-difference equation (1.4).

Corollary 1.3. Let P(z), Q(z) be nonzero polynomials. Then the differentialdifference equation

(1.5)
$$(f(z+c) - f(z))^2 + zP(z)^2(f^{(k)}(z))^2 = Q(z)$$

has no transcendental entire solution of finite order.

Example 1.1. If $P(z) \equiv 2i$, $c = \pi i$, $Q(z) \equiv 1$ and k is an odd, then $(f(z + \pi i) - f(z))^2 + (2i)^2(f^{(k)}(z))^2 = 1$ has a transcendental entire solution $f(z) = -\frac{e^{z+b}+e^{-(z+b)}}{4} = -\frac{1}{2}\cos(iz+ib)$, where b is a constant.

Barnett et al. [1] have stated a q-difference analogue of the logarithmic derivative lemma. However, they mainly investigated the zero-order meromorphic solutions of q-difference equations. In what follows, we will consider the entire

solutions of finite order, not limited to zero-order in Fermat type q-difference differential equations.

Liu and Cao $\left[9\right]$ have considered Fermat type q-difference differential equation

(1.6)
$$f'(z)^2 + (f(qz))^2 = 1,$$

and obtained the following result.

Theorem B (See [9]). The transcendental entire solutions with finite order of equation (1.6) satisfy $f(z) = \sin(z + B)$ when q = 1, and $f(z) = \sin(z + k\pi)$ or $f(z) = -\sin(z + k\pi + \frac{\pi}{2})$ when q = -1. There are no transcendental entire solutions with finite order when $q \neq \pm 1$.

In this paper, we consider an improvement of Theorem B and obtain the following results, which are also viewed as q-difference analogue of equation (1.2).

Theorem 1.2. The transcendental entire solutions with finite order of qdifference differential equation

(1.7)
$$f(qz)^2 + (f^{(k)}(z))^2 = 1,$$

must satisfy the following cases,

(i) $f(z) = \cos(iaz + ib)$, $a^k = -i$, k is an odd and b is a constant when q = 1;

(ii) $f(z) = \pm \sin(iaz), a^k = i, k \text{ is an odd or } f(z) = \pm \cos(iaz), a^k = -i, k$ is an odd or $f(z) = \pm \sin(iaz - \frac{\pi}{4}), a^k = 1, k \text{ is an even or } f(z) = \pm \sin(iaz + \frac{\pi}{4}), a^k = -1, k \text{ is an even when } q = -1$. There are no transcendental entire solutions with finite order when $q \neq \pm 1$.

Theorem 1.3. The transcendental entire solutions with finite order of qdifference differential equation

(1.8)
$$(f(qz) - f(z))^2 + (f^{(k)}(z))^2 = 1,$$

must satisfy $f(z) = \pm \frac{1}{2} \sin(iaz) + c$, c is a constant, $a^k = 2i$, k is an odd and q = -1. There are no transcendental entire solutions with finite order when $q \neq -1$ or k is an even.

2. Lemmas for the proof of theorems

Lemma 2.1 (See [15, Theorem 1.62]). Let $f_j(z)$ (j = 1, 2, ..., n) be meromorphic functions, $f_k(z)$ (k = 1, 2, ..., n - 1) be nonconstant functions, satisfying $\sum_{j=1}^n f_j(z) \equiv 1$ where $n \geq 3$. If $f_n(z) \not\equiv 0$ and

$$(2.1) \sum_{j=1}^{n} N\left(r, \frac{1}{f_j(z)}\right) + (n-1) \sum_{j=1}^{n} \overline{N}(r, f_j(z)) < (\lambda + o(1))T(r, f_k(z)) \ (r \in I),$$

where $\lambda < 1$ and $k = 1, 2, \ldots, n-1$, then $f_n(z) \equiv 1$.

Lemma 2.2. Let Q(z) be nonzero polynomial and satisfy

(2.2) $Q(z+c) - Q(z) \equiv c_1 Q'(z) + c_2 Q''(z) + \dots + c_k Q^{(k)}(z),$ where $c_1, c_2, \dots, c_k \in \mathbb{C} \setminus \{0\}, k \in \mathbb{N}$ and $c \neq c_1$. Then $Q(z) \equiv A$ (constant).

Proof. Suppose that $Q(z) \neq A$, then deg $Q(z) \geq 1$.

Denote

$$Q(z) = a_q z^q + a_{q-1} z^{q-1} + \dots + a_0 \ (a_q \neq 0).$$

Then

$$Q(z+c) = a_q(z+c)^q + a_{q-1}(z+c)^{q-1} + \dots + a_0,$$

$$Q'(z) = qa_q z^{q-1} + (q-1)a_{q-1}z^{q-2} + \dots + a_1,$$

$$Q(z+c) - Q(z) = qa_q c z^{q-1} + (a_q C_q^2 c^2 + a_{q-1} C_{q-1}^1 c) z^{q-2} + \dots.$$

Comparing the coefficients of z^{q-1} on both sides of (2.4), we see that $qa_qc = qa_qc_1$, that is $qa_q(c-c_1) = 0$. From deg $Q(z) = q \ge 1$, $c \ne c_1$ and $a_q \ne 0$, we can get a contradiction.

3. Proof of theorems

Proof of Theorem 1.1. Assume that f(z) is a transcendental entire solution of finite order of (1.4), then

$$(3.1) \ (f(z+c) - f(z) + iP(z)f^{(k)}(z))(f(z+c) - f(z) - iP(z)f^{(k)}(z)) = Q(z).$$

Thus, both $f(z+c) - f(z) + iP(z)f^{(k)}(z)$ and $f(z+c) - f(z) - iP(z)f^{(k)}(z)$ have finitely many zeros. Combining (3.1) with the Hadamard factorization theorem [15, Theorem 2.5], we assume that

$$f(z+c) - f(z) + iP(z)f^{(k)}(z) = Q_1(z)e^{h(z)}$$

and

$$f(z+c) - f(z) - iP(z)f^{(k)}(z) = Q_2(z)e^{-h(z)},$$

where h(z) is a nonconstant polynomial, otherwise f(z) is a polynomial, and $Q(z) = Q_1(z)Q_2(z)$, where $Q_1(z)$, $Q_2(z)$ are nonzero polynomials. Thus, we have

(3.2)
$$f(z+c) - f(z) = \frac{Q_1(z)e^{h(z)} + Q_2(z)e^{-h(z)}}{2}$$

and

(3.3)
$$f^{(k)}(z) = \frac{Q_1(z)e^{h(z)} - Q_2(z)e^{-h(z)}}{2iP(z)}.$$

It follows from (3.2) and (3.3) that

$$f^{(k)}(z+c) = \frac{Q_1(z+c)e^{h(z+c)} - Q_2(z+c)e^{-h(z+c)}}{2iP(z+c)}$$

$$(3.4) \qquad = \frac{(iP(z)p_1(z) + Q_1(z))e^{h(z)} + (iP(z)p_2(z) - Q_2(z))e^{-h(z)}}{2iP(z)}$$

where

$$p_{1}(z) = Q_{1}(z)(h'(z)^{k} + M_{k-1}(h'(z), h''(z), \dots, h^{(k)}(z))) + Q'_{1}(z)M_{k-1}(h'(z), h''(z), \dots, h^{(k-1)}(z)) + \cdots + Q_{1}^{(k-1)}(z)M_{1}(h'(z)) + Q_{1}^{(k)}(z), p_{2}(z) = Q_{2}(z)((-1)^{k}h'(z)^{k} + N_{k-1}(h'(z), h''(z), \dots, h^{(k)}(z))) + (-1)^{k-1}Q'_{2}(z)N_{k-1}(h'(z), h''(z), \dots, h^{(k-1)}(z)) + \cdots + (-1)Q_{2}^{(k-1)}(z)N_{1}(h'(z)) + Q_{2}^{(k)}(z),$$

and M_j, N_j (j = 1, 2, ..., k-1) are differential polynomials of h'(z) with degree j respectively.

If $iP(z)p_1(z) + Q_1(z) \equiv 0$ and $iP(z)p_2(z) - Q_2(z) \not\equiv 0$, then (3.4) can be rewritten as $P(z)Q_1(z+z)$

(3.5)
$$\frac{P(z)Q_1(z+c)}{P(z+c)(iP(z)p_2(z)-Q_2(z))}e^{h(z)+h(z+c)}$$
$$\equiv \frac{P(z)Q_2(z+c)}{P(z+c)(iP(z)p_2(z)-Q_2(z))}e^{h(z)-h(z+c)}+1,$$

compare the order of growth on both sides of (3.5), we see that (3.5) is a contradiction.

If $iP(z)p_2(z) - Q_2(z) \equiv 0$ and $iP(z)p_1(z) + Q_1(z) \neq 0$, then (3.4) can be rewritten as

(3.6)
$$\begin{aligned} &\frac{P(z)Q_2(z+c)}{P(z+c)(iP(z)p_1(z)+Q_1(z))}e^{-h(z+c)-h(z)}\\ &\equiv \frac{P(z)Q_1(z+c)}{P(z+c)(iP(z)p_1(z)+Q_1(z))}e^{h(z+c)-h(z)}-1, \end{aligned}$$

compare the order of growth on both sides of (3.6), we see that (3.6) is a contradiction.

Thus, we have $iP(z)p_1(z) + Q_1(z) \neq 0$ and $iP(z)p_2(z) - Q_2(z) \neq 0$. Then (3.4) can be rewritten as

$$(3.7) \qquad \begin{array}{l} P(z)Q_{1}(z+c) \\ \hline P(z+c)(iP(z)p_{2}(z)-Q_{2}(z)) \\ \hline P(z+c)(iP(z)p_{2}(z)-Q_{2}(z)) \\ -\frac{P(z)Q_{2}(z+c)}{P(z+c)(iP(z)p_{2}(z)-Q_{2}(z))} e^{h(z)-h(z+c)} \\ -\frac{iP(z)p_{1}(z)+Q_{1}(z)}{iP(z)p_{2}(z)-Q_{2}(z)} e^{2h(z)} \equiv 1. \end{array}$$

Since h(z) is a nonconstant polynomial, we know that both $e^{h(z)+h(z+c)}$ and $e^{2h(z)}$ are not constants. From Lemma 2.1, we see that

$$P(z+c)(iP(z)p_2(z) - Q_2(z))e^{h(z+c) - h(z)} \equiv -P(z)Q_2(z+c),$$

thus h(z) = az + b, where a is a nonzero constant, b is a constant.

Then, we have

(3.8)
$$p_1(z) = Q_1(z)a^k + kQ_1'(z)a^{k-1} + \dots + Q_1^{(k)}(z),$$

(3.9)
$$p_2(z) = (-1)^k Q_2(z) a^k + (-1)^{k-1} k Q'_2(z) a^{k-1} + \dots + Q_2^{(k)}(z).$$

By Lemma 2.1 and (3.7), we obtain

$$e^{ac} = e^{h(z+c)-h(z)} \equiv \frac{P(z+c)(iP(z)p_1(z)+Q_1(z))}{P(z)Q_1(z+c)}$$
$$\equiv -\frac{P(z)Q_2(z+c)}{P(z+c)(iP(z)p_2(z)-Q_2(z))},$$

that is,

(3.10)
$$e^{ac}P(z)Q_1(z+c) \equiv P(z+c)(iP(z)p_1(z)+Q_1(z)),$$

(3.11)
$$-e^{-ac}P(z)Q_2(z+c) \equiv P(z+c)(iP(z)p_2(z)-Q_2(z)).$$

From (3.8)-(3.11), we see that $P(z) \equiv A(\neq 0)$ and

(3.12)
$$e^{ac}Q_1(z+c) \equiv (iAa^k+1)Q_1(z) + iA(kQ'_1(z)a^{k-1} + \dots + Q_1^{(k)}(z)),$$

$$(3.13) \qquad -e^{-ac}Q_2(z+c) \equiv ((-1)^k iAa^k - 1)Q_2(z) + iA((-1)^{k-1}kQ_2'(z)a^{k-1} + \dots + Q_2^{(k)}(z)).$$

By (3.12) and (3.13), we get

$$e^{ac} = iAa^k + 1, \ -e^{-ac} = (-1)^k iAa^k - 1,$$

then k must be an odd, $a^k = \frac{2i}{A}$ and $c = \frac{(2m+1)\pi i}{a}$, $m \in \mathbb{Z}$. Therefore, (3.12) and (3.13) can be rewritten as

(3.14)
$$Q_1(z+c) - Q_1(z) \equiv -iA(ka^{k-1}Q_1'(z) + \dots + Q_1^{(k)}(z)),$$

(3.15)
$$Q_2(z+c) - Q_2(z) \equiv iA(-ka^{k-1}Q_2'(z) + \dots + Q_2^{(k)}(z)).$$

Since $c \neq -iAka^{k-1}$, by Lemma 2.2, we see that $Q_1(z) \equiv q_1(\text{constant}), Q_2(z) \equiv q_2(\text{constant}).$

From (1.4) and (3.3), we have

$$f(z) = \frac{q_1 e^{az+b} + q_2 e^{-(az+b)}}{2iAa^k} + c_1 = -\frac{q_1 e^{az+b} + q_2 e^{-(az+b)}}{4} + c_1$$

where $a(\neq 0), b, c_1 \in \mathbb{C}$ are constants. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. As in the beginning of the proof of Theorem 1.1, we have h(x) = h(x)

(3.16)
$$f(qz) = \frac{e^{h(z)} + e^{-h(z)}}{2}$$

and

(3.17)
$$f^{(k)}(z) = \frac{e^{h(z)} - e^{-h(z)}}{2i},$$

where h(z) is a nonconstant polynomial. Combining (3.16) with (3.17), we obtain

(3.18)
$$f^{(k)}(qz) = \frac{e^{h(qz)} - e^{-h(qz)}}{2i} = \frac{h_1(z)e^{h(z)} + h_2(z)e^{-h(z)}}{2q^k},$$

where

$$h_1(z) = h'^k(z) + M_{k-1}(h^{(k)}(z), \dots, h'(z)),$$

$$h_2(z) = (-1)^k h'^k(z) + N_{k-1}(h^{(k)}(z), \dots, h'(z))$$

and M_{k-1}, N_{k-1} are polynomials of $h'(z), \ldots, h^{(k)}(z)$ with degree k-1. By (3.18), we obtain

(3.19)
$$-\frac{ih_1(z)}{q^k}e^{h(qz)+h(z)} - \frac{ih_2(z)}{q^k}e^{h(qz)-h(z)} + e^{2h(qz)} \equiv 1.$$

From Lemma 2.1, if h(qz) + h(z) = A, then we have $-\frac{ih_1(z)}{q^k}e^A \equiv 1$ and $\frac{ih_2(z)}{q^k}e^{-A} \equiv 1$, which implies h(z) = az + b, where a is a nonzero constant, b is a constant. Thus, from h(z) = az + b, $-\frac{ia^k}{q^k}e^A = 1$ and $\frac{i(-1)^k a^k}{q^k}e^{-A} = 1$, we have q = -1, $(-1)^k a^{2k} = 1$. If k is an odd and $a^k = i$, then $e^A = e^{-A} = -1$, $b = \frac{1}{2}A = \frac{(2m+1)\pi i}{2}$, $m \in \mathbb{Z}$, from (1.7) and (3.17), we have

$$f(z) = \frac{e^{az+b} + e^{-(az+b)}}{2ia^k} = -\frac{e^{az+b} + e^{-(az+b)}}{2}$$
$$= -\cos(iaz+ib) = \pm\sin(iaz).$$

If k is an odd and $a^k = -i$, then $e^A = e^{-A} = 1$, $b = \frac{1}{2}A = m\pi i$, $m \in \mathbb{Z}$, from (1.7) and (3.17), we have

$$f(z) = \frac{e^{az+b} + e^{-(az+b)}}{2ia^k} = \frac{e^{az+b} + e^{-(az+b)}}{2}$$
$$= \cos(iaz + ib) = \pm \cos(iaz).$$

If k is an even and $a^k = 1$, then $e^A = i$, $e^{-A} = -i$, $b = \frac{1}{2}A = (m + \frac{1}{4})\pi i$, $m \in \mathbb{Z}$, from (1.7) and (3.17), we have

$$f(z) = \frac{e^{az+b} - e^{-(az+b)}}{2ia^k} = \frac{e^{az+b} - e^{-(az+b)}}{2i}$$
$$= -\sin(iaz+ib) = \pm\sin\left(iaz - \frac{\pi}{4}\right).$$

If k is an even and $a^k = -1$, then $e^A = -i$, $e^{-A} = i$, $b = \frac{1}{2}A = (m - \frac{1}{4})\pi i$, $m \in \mathbb{Z}$, from (1.7) and (3.17), we have

$$f(z) = \frac{e^{az+b} - e^{-(az+b)}}{2ia^k} = -\frac{e^{az+b} - e^{-(az+b)}}{2i}$$

$$=\sin(iaz+ib)=\pm\sin\left(iaz+\frac{\pi}{4}\right).$$

From Lemma 2.1, if h(qz) - h(z) = B, then we have $\frac{ih_1(z)}{q^k}e^{-B} \equiv 1$ and $-\frac{ih_2(z)}{q^k}e^B \equiv 1$, which implies h(z) = az + b, where *a* is a nonzero constant, *b* is a constant. Thus, from h(z) = az + b, $\frac{ia^k}{q^k}e^{-B} = 1$ and $-\frac{i(-1)^k a^k}{q^k}e^B = 1$, we have q = 1, $a^k = -i$ and *k* must be an odd. From (1.7) and (3.17), we have

$$f(z) = \frac{e^{az+b} + e^{-(az+b)}}{2ia^k} = \frac{e^{az+b} + e^{-(az+b)}}{2} = \cos(iaz+ib).$$

This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. As in the beginning of the proof of Theorem 1.1, we have

(3.20)
$$f(qz) - f(z) = \frac{e^{h(z)} + e^{-h(z)}}{2}$$

and

(3.21)
$$f^{(k)}(z) = \frac{e^{h(z)} - e^{-h(z)}}{2i},$$

where h(z) is a nonconstant polynomial. Combining (3.20) with (3.21), we obtain

(3.22)
$$-\frac{ih_1(z)+1}{q^k}e^{h(qz)+h(z)} - \frac{ih_2(z)-1}{q^k}e^{h(qz)-h(z)} + e^{2h(qz)} \equiv 1,$$

where

$$h_1(z) = h'^k(z) + M_{k-1}(h^{(k)}(z), \dots, h'(z)),$$

$$h_2(z) = (-1)^k h'^k(z) + N_{k-1}(h^{(k)}(z), \dots, h'(z))$$

and M_{k-1}, N_{k-1} are polynomials of $h'(z), \ldots, h^{(k)}(z)$ with degree k-1. If $ih_1(z) + 1 \equiv 0$ and $ih_2(z) - 1 \not\equiv 0$, from (3.22), we have

(3.23)
$$-\frac{ih_2(z)-1}{q^k}e^{h(qz)-h(z)} + e^{2h(qz)} \equiv 1.$$

Clearly, we find that 2h(qz) and h(qz) - h(z) are not constants synchronously. Thus (3.23) is impossible.

If $ih_2(z) - 1 \equiv 0$ and $ih_1(z) + 1 \neq 0$, from (3.22), we have

(3.24)
$$-\frac{ih_1(z)+1}{q^k}e^{h(qz)+h(z)} + e^{2h(qz)} \equiv 1,$$

and 2h(qz) and h(qz) + h(z) are not constants simultaneously, then (3.24) is also impossible.

Thus, we have $ih_1(z) + 1 \neq 0$ and $ih_2(z) - 1 \neq 0$.

From (3.22) and Lemma 2.1, if h(qz)+h(z) = A, then we have $-\frac{ih_1(z)+1}{q^k}e^A \equiv 1$ and $\frac{ih_2(z)-1}{q^k}e^{-A} \equiv 1$, which implies h(z) = az + b, where a is a nonzero

constant, *b* is a constant. Thus, from h(z) = az + b, $-\frac{ia^k+1}{q^k}e^A = 1$ and $\frac{i(-1)^k a^k - 1}{q^k}e^{-A} = 1$, we have q = -1, $a^k = 2i$, $e^A = e^{-A} = -1$, $b = \frac{1}{2}A = \frac{(2m+1)\pi i}{2}$, $m \in \mathbb{Z}$ and *k* must be an odd. By (1.8) and (3.21), we have

$$f(z) = \frac{e^{az+b} + e^{-(az+b)}}{2ia^k} + c = -\frac{e^{az+b} + e^{-(az+b)}}{4} + c$$
$$= -\frac{1}{2}\cos(iaz+ib) + c = \pm\frac{1}{2}\sin(iaz) + c,$$

where $a(\neq 0), b, c \in \mathbb{C}$ are constants.

From (3.22) and Lemma 2.1, if h(qz)-h(z) = B, then we have $-\frac{ih_2(z)-1}{q^k}e^B \equiv 1$ and $\frac{ih_1(z)+1}{q^k}e^{-B} \equiv 1$, which implies h(z) = az + b, where a is a nonzero constant, b is a constant. Thus, from h(z) = az + b, $-\frac{i(-1)^k a^k - 1}{q^k}e^B = 1$ and $\frac{ia^k+1}{q^k}e^{-B} = 1$, we have a = 0, which is impossible. This completes the proof of Theorem 1.3.

References

- D. C. Barnett, R. G. Halburd, W. Morgan, and R. J. Korhonen, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 3, 457–474.
- [2] Z. X. Chen, Growth and zeros of meromorphic solution of some linear difference equations, J. Math. Anal. Appl. 373 (2011), no. 1, 235–241.
- [3] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z+η) and diffdeence equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105–129.
- [4] F. Gross, On the equation $f(z)^n + g(z)^n = 1$, Bull. Amer. Math. Soc. **72** (1966), 86–88. [5] _____, On the equation $f(z)^n + g(z)^n = h(z)^n$, Amer. Math. Monthly **73** (1966),
- 1093–1096; J. Math. Anal. Appl. **314** (2006), 477–487.
- [6] W. K. Hayman, Meromorphic Function, Clarendon Press, Oxford, 1964.
- [7] I. Laine, Nevanlinna Theory and Complex Differential Equations, Water de Gruyter, Berlin, 1993.
- [8] S. Li and Z. S. Gao, Finite order meromorphic solutions of linear difference equations, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 5, 73–76.
- K. Liu and T. B. Cao, Entire solutions of Fermat type q-difference differential equations, Electron. J. Differential Equations 2013 (2013), no. 59, 1–10.
- [10] K. Liu and L. Z. Yang, On entire solutions of some differential-difference equations, Comput. Methods Funct. Theory 13 (2013), no. 3, 433–447.
- P. Montel, Lecons sur les familles de nomales fonctions analytiques et leurs applications, Gauthier-Viuars Paris (1927), 135–136.
- [12] J. F. Tang and L. W. Liao, The transcendental meromorphic solutions of a certain type of nonlinear differential equations, J. Math. Anal. Appl. 334 (2007), no. 1, 517–527.
- [13] C. C. Yang, A generalization of a theorem of P. Montel on entire functions, Proc. Amer. Math. Sci. 26 (1970), 332–334.
- [14] C. C. Yang and I. Laine, On analogies between nonlinear difference and differential equations, Proc. Japan. Acad. Ser. A. Math. Sci. 86 (2010), 10–14.
- [15] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.

MIN FENG CHEN AND ZONG SHENG GAO

MIN FENG CHEN LMIB AND SCHOOL OF MATHEMATICS AND SYSTEMS SCIENCE BEIHANG UNIVERSITY BEIJING, 100191, P. R. CHINA *E-mail address*: chenminfeng198710@126.com

ZONG SHENG GAO LMIB AND SCHOOL OF MATHEMATICS AND SYSTEMS SCIENCE BEIHANG UNIVERSITY BEIJING, 100191, P. R. CHINA *E-mail address*: zshgao@buaa.edu.cn