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ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE

EQUATION AND FERMAT TYPE q-DIFFERENCE

DIFFERENTIAL EQUATIONS

Min Feng Chen and Zong Sheng Gao

Abstract. In this paper, we investigate the differential-difference equa-
tion

(f(z + c)− f(z))2 + P (z)2(f(k)(z))2 = Q(z),

where P (z), Q(z) are nonzero polynomials. In addition, we also investi-
gate Fermat type q-difference differential equations

f(qz)2 + (f(k)(z))2 = 1 and (f(qz) − f(z))2 + (f(k)(z))2 = 1.

If the above equations admit a transcendental entire solution of finite

order, then we can obtain the precise expression of the solution.

1. Introduction and results

In this paper, we assume that the reader is familiar with standard symbols
and fundamental results of Nevanlinna theory [6, 7]. In addition, we use the
notation σ(f) to denote the order of growth of the meromorphic function f(z).
And we denote by S(r, f) any quantify satisfying S(r, f) = o(T (r, f)), as r →
∞, outside of a possible exceptional set of finite logarithmic measure.

Recently, a number of papers (including [2, 3, 8, 14]) have focused on mero-
morphic solutions of complex difference equations and differential-difference
equations. Fermat type functional equations were investigated by Gross [4, 5],
Montel [11] and Yang [13]. Yang [13] investigated the Fermat type functional
equation

(1.1) a(z)f(z)n + b(z)g(z)m = 1,

where a(z), b(z) are small functions with respect to f(z) and obtained the
following result.
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Theorem A (See [13]). Let m,n be positive integers satisfying 1
m

+ 1
n

< 1.
Then there are no nonconstant entire solutions f(z) and g(z) that satisfy (1.1).

Theorem A implies that there are nonconstant entire solutions with the
assumption of m > 2, n > 2 in (1.1). However, when m = n = 2 and g(z) has a
specific relationship with f(z) in (1.1), the problem is worth to be considered.

Tang and Liao [12] investigated the entire solutions of the following equation

(1.2) f(z)2 + P (z)2(f (k)(z))2 = Q(z),

where P (z), Q(z) are nonzero polynomials.
Liu and Yang [10] considered the finite order entire solutions of the differen-

tial-difference equation

(1.3) f(z + c)2 + (f (k)(z))2 = 1.

In this paper, we consider the entire solutions of the following differential-
difference equation

(1.4) (f(z + c)− f(z))2 + P (z)2(f (k)(z))2 = Q(z),

where P (z), Q(z) are nonzero polynomials, and obtain the following results.

Theorem 1.1. Let P (z), Q(z) be nonzero polynomials. If the differential-

difference equation (1.4) admits a transcendental entire solution of finite order,

then P (z) ≡ A (constant), Q(z) ≡ q1q2 (constant) and k must be an odd. Thus,

f(z) = − q1e
az+b+q2e

−(az+b)

4 + c1, where a, b, c, c1 ∈ C are constants such that

ak = 2i
A
, c = (2m+1)πi

a
, m ∈ Z.

Corollary 1.1. If P (z), Q(z) are nonconstant polynomials, then there does not

exist transcendental entire solution of finite order of the differential-difference

equation (1.4).

Corollary 1.2. If P (z), Q(z) are nonzero polynomials and k is an even,

then there does not exist transcendental entire solution of finite order of the

differential-difference equation (1.4).

Corollary 1.3. Let P (z), Q(z) be nonzero polynomials. Then the differential-

difference equation

(1.5) (f(z + c)− f(z))2 + zP (z)2(f (k)(z))2 = Q(z)

has no transcendental entire solution of finite order.

Example 1.1. If P (z) ≡ 2i, c = πi, Q(z) ≡ 1 and k is an odd, then (f(z +
πi) − f(z))2 + (2i)2(f (k)(z))2 = 1 has a transcendental entire solution f(z) =

− ez+b+e−(z+b)

4 = − 1
2 cos(iz + ib), where b is a constant.

Barnett et al. [1] have stated a q-difference analogue of the logarithmic de-
rivative lemma. However, they mainly investigated the zero-order meromorphic
solutions of q-difference equations. In what follows, we will consider the entire
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solutions of finite order, not limited to zero-order in Fermat type q-difference
differential equations.

Liu and Cao [9] have considered Fermat type q-difference differential equa-
tion

(1.6) f ′(z)2 + (f(qz))2 = 1,

and obtained the following result.

Theorem B (See [9]). The transcendental entire solutions with finite order of

equation (1.6) satisfy f(z) = sin(z + B) when q = 1, and f(z) = sin(z + kπ)
or f(z) = − sin(z + kπ + π

2 ) when q = −1. There are no transcendental entire

solutions with finite order when q 6= ±1.

In this paper, we consider an improvement of Theorem B and obtain the
following results, which are also viewed as q-difference analogue of equation
(1.2).

Theorem 1.2. The transcendental entire solutions with finite order of q-

difference differential equation

(1.7) f(qz)2 + (f (k)(z))2 = 1,

must satisfy the following cases,

(i) f(z) = cos(iaz + ib), ak = −i, k is an odd and b is a constant when

q = 1;
(ii) f(z) = ± sin(iaz), ak = i, k is an odd or f(z) = ± cos(iaz), ak = −i, k

is an odd or f(z) = ± sin(iaz− π
4 ), ak = 1, k is an even or f(z) = ± sin(iaz+

π
4 ), ak = −1, k is an even when q = −1. There are no transcendental entire

solutions with finite order when q 6= ±1.

Theorem 1.3. The transcendental entire solutions with finite order of q-

difference differential equation

(1.8) (f(qz)− f(z))2 + (f (k)(z))2 = 1,

must satisfy f(z) = ± 1
2 sin(iaz) + c, c is a constant, ak = 2i, k is an odd and

q = −1. There are no transcendental entire solutions with finite order when

q 6= −1 or k is an even.

2. Lemmas for the proof of theorems

Lemma 2.1 (See [15, Theorem 1.62]). Let fj(z) (j = 1, 2, . . . , n) be meromor-

phic functions, fk(z) (k = 1, 2, . . . , n− 1) be nonconstant functions, satisfying
∑n

j=1 fj(z) ≡ 1 where n ≥ 3. If fn(z) 6≡ 0 and

(2.1)

n
∑

j=1

N

(

r,
1

fj(z)

)

+(n−1)

n
∑

j=1

N(r, fj(z)) < (λ+o(1))T (r, fk(z)) (r ∈ I),

where λ < 1 and k = 1, 2, . . . , n− 1, then fn(z) ≡ 1.
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Lemma 2.2. Let Q(z) be nonzero polynomial and satisfy

(2.2) Q(z + c)−Q(z) ≡ c1Q
′(z) + c2Q

′′(z) + · · ·+ ckQ
(k)(z),

where c1, c2, . . . , ck ∈ C \ {0}, k ∈ N and c 6= c1. Then Q(z) ≡ A (constant).

Proof. Suppose that Q(z) 6≡ A, then degQ(z) ≥ 1.
Denote

Q(z) = aqz
q + aq−1z

q−1 + · · ·+ a0 (aq 6= 0).

Then

Q(z + c) = aq(z + c)q + aq−1(z + c)q−1 + · · ·+ a0,

Q′(z) = qaqz
q−1 + (q − 1)aq−1z

q−2 + · · ·+ a1,

Q(z + c)−Q(z) = qaqcz
q−1 + (aqC

2
q c

2 + aq−1C
1
q−1c)z

q−2 + · · · .

Comparing the coefficients of zq−1 on both sides of (2.4), we see that qaqc =
qaqc1, that is qaq(c− c1) = 0. From degQ(z) = q ≥ 1, c 6= c1 and aq 6= 0, we
can get a contradiction. �

3. Proof of theorems

Proof of Theorem 1.1. Assume that f(z) is a transcendental entire solution of
finite order of (1.4), then

(3.1) (f(z+ c)− f(z)+ iP (z)f (k)(z))(f(z+ c)− f(z)− iP (z)f (k)(z)) = Q(z).

Thus, both f(z + c)− f(z) + iP (z)f (k)(z) and f(z + c)− f(z)− iP (z)f (k)(z)
have finitely many zeros. Combining (3.1) with the Hadamard factorization
theorem [15, Theorem 2.5], we assume that

f(z + c)− f(z) + iP (z)f (k)(z) = Q1(z)e
h(z)

and
f(z + c)− f(z)− iP (z)f (k)(z) = Q2(z)e

−h(z),

where h(z) is a nonconstant polynomial, otherwise f(z) is a polynomial, and
Q(z) = Q1(z)Q2(z), where Q1(z), Q2(z) are nonzero polynomials. Thus, we
have

(3.2) f(z + c)− f(z) =
Q1(z)e

h(z) +Q2(z)e
−h(z)

2
and

(3.3) f (k)(z) =
Q1(z)e

h(z) −Q2(z)e
−h(z)

2iP (z)
.

It follows from (3.2) and (3.3) that

f (k)(z + c) =
Q1(z + c)eh(z+c) −Q2(z + c)e−h(z+c)

2iP (z + c)

=
(iP (z)p1(z) +Q1(z))e

h(z) + (iP (z)p2(z)−Q2(z))e
−h(z)

2iP (z)
,(3.4)
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where

p1(z) = Q1(z)(h
′(z)k +Mk−1(h

′(z), h′′(z), . . . , h(k)(z)))

+Q′

1(z)Mk−1(h
′(z), h′′(z), . . . , h(k−1)(z)) + · · ·

+Q
(k−1)
1 (z)M1(h

′(z)) +Q
(k)
1 (z),

p2(z) = Q2(z)((−1)kh′(z)k +Nk−1(h
′(z), h′′(z), . . . , h(k)(z)))

+ (−1)k−1Q′

2(z)Nk−1(h
′(z), h′′(z), . . . , h(k−1)(z)) + · · ·

+ (−1)Q
(k−1)
2 (z)N1(h

′(z)) +Q
(k)
2 (z),

and Mj , Nj (j = 1, 2, . . . , k−1) are differential polynomials of h′(z) with degree
j respectively.

If iP (z)p1(z) + Q1(z) ≡ 0 and iP (z)p2(z) − Q2(z) 6≡ 0, then (3.4) can be
rewritten as

P (z)Q1(z + c)

P (z + c)(iP (z)p2(z)−Q2(z))
eh(z)+h(z+c)

≡
P (z)Q2(z + c)

P (z + c)(iP (z)p2(z)−Q2(z))
eh(z)−h(z+c) + 1,(3.5)

compare the order of growth on both sides of (3.5), we see that (3.5) is a
contradiction.

If iP (z)p2(z) − Q2(z) ≡ 0 and iP (z)p1(z) + Q1(z) 6≡ 0, then (3.4) can be
rewritten as

P (z)Q2(z + c)

P (z + c)(iP (z)p1(z) +Q1(z))
e−h(z+c)−h(z)

≡
P (z)Q1(z + c)

P (z + c)(iP (z)p1(z) +Q1(z))
eh(z+c)−h(z) − 1,(3.6)

compare the order of growth on both sides of (3.6), we see that (3.6) is a
contradiction.

Thus, we have iP (z)p1(z) + Q1(z) 6≡ 0 and iP (z)p2(z) − Q2(z) 6≡ 0. Then
(3.4) can be rewritten as

P (z)Q1(z + c)

P (z + c)(iP (z)p2(z)−Q2(z))
eh(z)+h(z+c)

−
P (z)Q2(z + c)

P (z + c)(iP (z)p2(z)−Q2(z))
eh(z)−h(z+c)

−
iP (z)p1(z) +Q1(z)

iP (z)p2(z)−Q2(z)
e2h(z) ≡ 1.(3.7)

Since h(z) is a nonconstant polynomial, we know that both eh(z)+h(z+c) and
e2h(z) are not constants. From Lemma 2.1, we see that

P (z + c)(iP (z)p2(z)−Q2(z))e
h(z+c)−h(z) ≡ −P (z)Q2(z + c),

thus h(z) = az + b, where a is a nonzero constant, b is a constant.
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Then, we have

(3.8) p1(z) = Q1(z)a
k + kQ′

1(z)a
k−1 + · · ·+Q

(k)
1 (z),

(3.9) p2(z) = (−1)kQ2(z)a
k + (−1)k−1kQ′

2(z)a
k−1 + · · ·+Q

(k)
2 (z).

By Lemma 2.1 and (3.7), we obtain

eac = eh(z+c)−h(z) ≡
P (z + c)(iP (z)p1(z) +Q1(z))

P (z)Q1(z + c)

≡ −
P (z)Q2(z + c)

P (z + c)(iP (z)p2(z)−Q2(z))
,

that is,

(3.10) eacP (z)Q1(z + c) ≡ P (z + c)(iP (z)p1(z) +Q1(z)),

(3.11) −e−acP (z)Q2(z + c) ≡ P (z + c)(iP (z)p2(z)−Q2(z)).

From (3.8)-(3.11), we see that P (z) ≡ A(6= 0) and

(3.12) eacQ1(z + c) ≡ (iAak + 1)Q1(z) + iA(kQ′

1(z)a
k−1 + · · ·+Q

(k)
1 (z)),

−e−acQ2(z + c) ≡ ((−1)kiAak − 1)Q2(z)

+ iA((−1)k−1kQ′

2(z)a
k−1 + · · ·+Q

(k)
2 (z)).(3.13)

By (3.12) and (3.13), we get

eac = iAak + 1, −e−ac = (−1)kiAak − 1,

then k must be an odd, ak = 2i
A

and c = (2m+1)πi
a

, m ∈ Z.
Therefore, (3.12) and (3.13) can be rewritten as

(3.14) Q1(z + c)−Q1(z) ≡ −iA(kak−1Q′

1(z) + · · ·+Q
(k)
1 (z)),

(3.15) Q2(z + c)−Q2(z) ≡ iA(−kak−1Q′

2(z) + · · ·+Q
(k)
2 (z)).

Since c 6= −iAkak−1, by Lemma 2.2, we see that Q1(z) ≡ q1(constant), Q2(z) ≡
q2(constant).

From (1.4) and (3.3), we have

f(z) =
q1e

az+b + q2e
−(az+b)

2iAak
+ c1 = −

q1e
az+b + q2e

−(az+b)

4
+ c1,

where a(6= 0), b, c1 ∈ C are constants. This completes the proof of Theorem
1.1. �

Proof of Theorem 1.2. As in the beginning of the proof of Theorem 1.1, we
have

(3.16) f(qz) =
eh(z) + e−h(z)

2
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and

(3.17) f (k)(z) =
eh(z) − e−h(z)

2i
,

where h(z) is a nonconstant polynomial. Combining (3.16) with (3.17), we
obtain

(3.18) f (k)(qz) =
eh(qz) − e−h(qz)

2i
=

h1(z)e
h(z) + h2(z)e

−h(z)

2qk
,

where

h1(z) = h′k(z) +Mk−1(h
(k)(z), . . . , h′(z)),

h2(z) = (−1)kh′k(z) +Nk−1(h
(k)(z), . . . , h′(z))

and Mk−1, Nk−1 are polynomials of h′(z), . . . , h(k)(z) with degree k − 1. By
(3.18), we obtain

(3.19) −
ih1(z)

qk
eh(qz)+h(z) −

ih2(z)

qk
eh(qz)−h(z) + e2h(qz) ≡ 1.

From Lemma 2.1, if h(qz) + h(z) = A, then we have − ih1(z)
qk

eA ≡ 1 and
ih2(z)
qk

e−A ≡ 1, which implies h(z) = az + b, where a is a nonzero constant, b

is a constant. Thus, from h(z) = az + b, − iak

qk
eA = 1 and i(−1)kak

qk
e−A = 1, we

have q = −1, (−1)ka2k = 1. If k is an odd and ak = i, then eA = e−A = −1,

b = 1
2A = (2m+1)πi

2 , m ∈ Z, from (1.7) and (3.17), we have

f(z) =
eaz+b + e−(az+b)

2iak
= −

eaz+b + e−(az+b)

2
= − cos(iaz + ib) = ± sin(iaz).

If k is an odd and ak = −i, then eA = e−A = 1, b = 1
2A = mπi, m ∈ Z, from

(1.7) and (3.17), we have

f(z) =
eaz+b + e−(az+b)

2iak
=

eaz+b + e−(az+b)

2
= cos(iaz + ib) = ± cos(iaz).

If k is an even and ak = 1, then eA = i, e−A = −i, b = 1
2A = (m+ 1

4 )πi, m ∈ Z,
from (1.7) and (3.17), we have

f(z) =
eaz+b − e−(az+b)

2iak
=

eaz+b − e−(az+b)

2i

= − sin(iaz + ib) = ± sin
(

iaz −
π

4

)

.

If k is an even and ak = −1, then eA = −i, e−A = i, b = 1
2A = (m− 1

4 )πi, m ∈
Z, from (1.7) and (3.17), we have

f(z) =
eaz+b − e−(az+b)

2iak
= −

eaz+b − e−(az+b)

2i
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= sin(iaz + ib) = ± sin
(

iaz +
π

4

)

.

From Lemma 2.1, if h(qz) − h(z) = B, then we have ih1(z)
qk

e−B ≡ 1 and

− ih2(z)
qk

eB ≡ 1, which implies h(z) = az + b, where a is a nonzero constant, b

is a constant. Thus, from h(z) = az + b, iak

qk
e−B = 1 and − i(−1)kak

qk
eB = 1, we

have q = 1, ak = −i and k must be an odd. From (1.7) and (3.17), we have

f(z) =
eaz+b + e−(az+b)

2iak
=

eaz+b + e−(az+b)

2
= cos(iaz + ib).

This completes the proof of Theorem 1.2. �

Proof of Theorem 1.3. As in the beginning of the proof of Theorem 1.1, we
have

(3.20) f(qz)− f(z) =
eh(z) + e−h(z)

2

and

(3.21) f (k)(z) =
eh(z) − e−h(z)

2i
,

where h(z) is a nonconstant polynomial. Combining (3.20) with (3.21), we
obtain

(3.22) −
ih1(z) + 1

qk
eh(qz)+h(z) −

ih2(z)− 1

qk
eh(qz)−h(z) + e2h(qz) ≡ 1,

where

h1(z) = h′k(z) +Mk−1(h
(k)(z), . . . , h′(z)),

h2(z) = (−1)kh′k(z) +Nk−1(h
(k)(z), . . . , h′(z))

and Mk−1, Nk−1 are polynomials of h′(z), . . . , h(k)(z) with degree k − 1.
If ih1(z) + 1 ≡ 0 and ih2(z)− 1 6≡ 0, from (3.22), we have

(3.23) −
ih2(z)− 1

qk
eh(qz)−h(z) + e2h(qz) ≡ 1.

Clearly, we find that 2h(qz) and h(qz)− h(z) are not constants synchronously.
Thus (3.23) is impossible.

If ih2(z)− 1 ≡ 0 and ih1(z) + 1 6≡ 0, from (3.22), we have

(3.24) −
ih1(z) + 1

qk
eh(qz)+h(z) + e2h(qz) ≡ 1,

and 2h(qz) and h(qz) + h(z) are not constants simultaneously, then (3.24) is
also impossible.

Thus, we have ih1(z) + 1 6≡ 0 and ih2(z)− 1 6≡ 0.

From (3.22) and Lemma 2.1, if h(qz)+h(z) = A, then we have− ih1(z)+1
qk

eA ≡

1 and ih2(z)−1
qk

e−A ≡ 1, which implies h(z) = az + b, where a is a nonzero
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constant, b is a constant. Thus, from h(z) = az + b, − iak+1
qk

eA = 1 and
i(−1)kak

−1
qk

e−A = 1, we have q = −1, ak = 2i, eA = e−A = −1, b = 1
2A =

(2m+1)πi
2 , m ∈ Z and k must be an odd. By (1.8) and (3.21), we have

f(z) =
eaz+b + e−(az+b)

2iak
+ c = −

eaz+b + e−(az+b)

4
+ c

= −
1

2
cos(iaz + ib) + c = ±

1

2
sin(iaz) + c,

where a(6= 0), b, c ∈ C are constants.

From (3.22) and Lemma 2.1, if h(qz)−h(z) = B, then we have− ih2(z)−1
qk

eB ≡

1 and ih1(z)+1
qk

e−B ≡ 1, which implies h(z) = az + b, where a is a nonzero con-

stant, b is a constant. Thus, from h(z) = az + b, − i(−1)kak
−1

qk
eB = 1 and

iak+1
qk

e−B = 1, we have a = 0, which is impossible. This completes the proof

of Theorem 1.3. �

References

[1] D. C. Barnett, R. G. Halburd, W. Morgan, and R. J. Korhonen, Nevanlinna theory

for the q-difference operator and meromorphic solutions of q-difference equations, Proc.
Roy. Soc. Edinburgh Sect. A 137 (2007), no. 3, 457–474.

[2] Z. X. Chen, Growth and zeros of meromorphic solution of some linear difference equa-

tions, J. Math. Anal. Appl. 373 (2011), no. 1, 235–241.
[3] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z+η) and diffdeence

equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105–129.
[4] F. Gross, On the equation f(z)n + g(z)n = 1, Bull. Amer. Math. Soc. 72 (1966), 86–88.
[5] , On the equation f(z)n + g(z)n = h(z)n, Amer. Math. Monthly 73 (1966),

1093–1096; J. Math. Anal. Appl. 314 (2006), 477–487.
[6] W. K. Hayman, Meromorphic Function, Clarendon Press, Oxford, 1964.
[7] I. Laine, Nevanlinna Theory and Complex Differential Equations, Water de Gruyter,

Berlin, 1993.
[8] S. Li and Z. S. Gao, Finite order meromorphic solutions of linear difference equations,

Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 5, 73–76.
[9] K. Liu and T. B. Cao, Entire solutions of Fermat type q-difference differential equations,

Electron. J. Differential Equations 2013 (2013), no. 59, 1–10.
[10] K. Liu and L. Z. Yang, On entire solutions of some differential-difference equations,

Comput. Methods Funct. Theory 13 (2013), no. 3, 433–447.
[11] P. Montel, Lecons sur les familles de nomales fonctions analytiques et leurs applications,

Gauthier-Viuars Paris (1927), 135–136.
[12] J. F. Tang and L. W. Liao, The transcendental meromorphic solutions of a certain type

of nonlinear differential equations, J. Math. Anal. Appl. 334 (2007), no. 1, 517–527.
[13] C. C. Yang, A generalization of a theorem of P. Montel on entire functions, Proc. Amer.

Math. Sci. 26 (1970), 332–334.
[14] C. C. Yang and I. Laine, On analogies between nonlinear difference and differential

equations, Proc. Japan. Acad. Ser. A. Math. Sci. 86 (2010), 10–14.
[15] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics

and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.



456 MIN FENG CHEN AND ZONG SHENG GAO

Min Feng Chen

LMIB and School of Mathematics and Systems Science

Beihang University

Beijing, 100191, P. R. China

E-mail address: chenminfeng198710@126.com

Zong Sheng Gao

LMIB and School of Mathematics and Systems Science

Beihang University

Beijing, 100191, P. R. China

E-mail address: zshgao@buaa.edu.cn


