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ON THE EXISTENCE OF SOLUTIONS OF FERMAT-TYPE

DIFFERENTIAL-DIFFERENCE EQUATIONS

Jun-Fan Chen and Shu-Qing Lin

Abstract. We investigate the non-existence of finite order transcenden-

tal entire solutions of Fermat-type differential-difference equations[
f(z)f ′(z)

]n
+ P 2(z)fm(z + η) = Q(z)

and [
f(z)f ′(z)

]n
+ P (z)[∆ηf(z)]m = Q(z),

where P (z) and Q(z) are non-zero polynomials, m and n are positive

integers, and η ∈ C \ {0}. In addition, we discuss transcendental entire

solutions of finite order of the following Fermat-type differential-difference
equation

P 2(z)
[
f (k)(z)

]2
+ [αf(z + η)− βf(z)]2 = er(z),

where P (z) 6≡ 0 is a polynomial, r(z) is a non-constant polynomial, α 6= 0

and β are constants, k is a positive integer, and η ∈ C \ {0}. Our results

generalize some previous results.

1. Introduction

Let C denote the complex plane and suppose that f(z) is a meromorphic
function in C. Here and in the sequel it is assumed that the reader is familiar
with the Nevanlinna theory and standard notations (see [7,8]) such as T (r, f),
m(r, f), N(r, f) and S(r, f). If a meromorphic function a(z) ( 6≡ ∞) satisfies

T (r, a) = o(T (r, f)) = S(r, f), r →∞,

outside possibly an exceptional set of finite logarithmic measure, then a(z) is
called a small function of f(z). And we define the order ρ of growth of f(z) by

ρ := ρ(f(z)) = lim sup
r→∞

log T (r, f(z))

log r
.

Received September 9, 2020; Accepted March 8, 2021.
2010 Mathematics Subject Classification. 39B32, 34M05, 30D35.
Key words and phrases. Fermat-type equation, differential-difference, entire function,

Nevanlinna theory.
Project supported by the Natural Science Foundation of Fujian Province, China (Grants

Nos. 2018J01658 and 2019J01672).

c©2021 Korean Mathematical Society

983



984 J. F. CHEN AND S. Q. LIN

For a non-zero complex constant η, we will define its shift by fη(z) = f(z+η)
and its difference operators by

∆ηf(z) = f(z + η)− f(z), ∆n
ηf(z) = ∆n−1

η (∆ηf(z)), n ∈ N, n ≥ 2.

In 1966, Gross [3, 4] studied the Fermat-type functional equation fn(z) +
gn(z) = 1, and many famous results have been obtained since then (see [6, 9,
11,13,14,16,18]).

In 1970, Yang [14] studied the Fermat-type functional equation

(1.1) a(z)fn(z) + b(z)gm(z) = 1,

where a(z) and b(z) are small functions with respect to f(z), and obtained the
following result.

Theorem A (see [14]). Let m, n be positive integers satisfying 1
m + 1

n < 1.
Then there are no non-constant entire solutions f(z) and g(z) that satisfy (1.1).

In recent years, it is an interesting and quite difficult question to study the
solvability and existence of entire or meromorphic solutions of non-linear differ-
ence (or differential, or differential-difference) equations in the complex domain.
Many authors have investigated this question since Halburd and Korhonen [5],
Chiang and Feng [2] successfully proved the lemma analogue of the logarith-
mic derivative, and many remarkable results have been rapidly obtained (see
[1, 6, 9–13, 15, 18]). For instance, in 2012, Liu et al. [9] obtained the following
results.

Theorem B (see [9]). If n 6= m, then the equation

(1.2) f ′
n
(z) + fm(z + η) = 1

has no finite order transcendental entire solutions, where m and n are positive
integers, η ∈ C \ {0}.

Theorem C (see [9]). If m 6= n > 1, then the equation

(1.3) f ′
n
(z) + [∆ηf(z)]m = 1

has no finite order transcendental entire solutions, where m and n are positive
integers, η ∈ C \ {0}.

Firstly, we consider the non-existence of finite order transcendental entire
solutions of Fermat-type differential-difference equations

(1.4) [f(z)f ′(z)]
n

+ P 2(z)fm(z + η) = Q(z),

(1.5) [f(z)f ′(z)]
n

+ P (z)[∆ηf(z)]m = Q(z),

and prove the following results.

Theorem 1.1. If m = n, then the equation (1.4) has no finite order transcen-
dental entire solutions, where P (z) and Q(z) are non-zero polynomials, m and
n are positive integers, and η ∈ C \ {0}.
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Remark 1.1. We shall give an example below to show that (1.4) may have a
finite order transcendental entire solution f for n = 1, m = 2.

Example 1.1. If n = 1, m = 2, P (z) ≡ 1, and Q(z) ≡ 4 in (1.4), then

f(z)f ′(z) + f2(z + η) = 4

has a solution f(z) = 2ei(z+b) + e−i(z+b) = 2
√

2 cos z, where eib =
√
2
2 , η =

3π
4 + kπ, k is an integer, and b is a constant.

Theorem 1.2. If m 6= n, n > 2, then the equation (1.5) has no finite order
transcendental entire solutions, where P (z) and Q(z) are non-zero polynomials,
m and n are positive integers, and η ∈ C \ {0}.

Remark 1.2. We shall give an example below to show that (1.5) may have a
finite order transcendental entire solution f for n = 1, m = 2.

Example 1.2. If n = 1, m = 2, P (z) ≡ 1, and Q(z) ≡ −4 in (1.5), then

f(z)f ′(z) + [∆ηf(z)]2 = −4

has a solution f(z) = e2iz−e−2iz = 2i sin 2z, where η = π
4 +kπ, k is an integer.

From the beginning of Theorem A, the case of m > 2, n > 2 in (1.3) is
obvious. If m = n = 2 in (1.3), then a result can be stated as follows.

Theorem D (see [9]). The finite order transcendental entire solutions of the
differential-difference equation

(1.6) [f ′(z)]2 + [∆ηf(z)]2 = 1

must satisfy f(z) = 1
2 sin(2z +Bi), where η = nπ + π

2 , n is an integer, and B
is a constant.

In 2019, Zeng et al. [18] generalized the complex differential-difference equa-
tion (1.6) in Theorem D as

(1.7) [f (k)(z)]2 + [αf(z + η)− βf(z)]2 = 1,

where α 6= 0 and β are constants, k is a positive integer, and η ∈ C \ {0}. Then
they obtained the following result.

Theorem E (see [18]). If f(z) is a finite order entire solution of (1.7), then
there exist two cases:

(I) if f(z) is a transcendental solution of (1.7), then either
(I.i) when k is an odd number, f(z) must satisfy the form that

f(z) =
eaz+b − e−az−b

2ak
+ d,

where a, b, d are constants, n is an integer. In this case, (I.i.i) if α = β,

then ak = −2αi, η = (2n+1)π
a i; (I.i.ii) if α = −β, then ak = 2αi, η = 2nπ

a i,

d = 0; (I.i.iii) if α 6= ±β, then ak = −(α+ β)i, η = (2n+1)π
a i or ak = (α− β)i,

η = 2nπ
a i, d = 0; or
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(I.ii) when k is an even number and α = ±β, the equation (1.7) does not
have transcendental entire solutions; when k is an even number and α 6= ±β,
f(z) must satisfy the form that

f(z) =
eaz+b + e−az−b

2ak
,

where a and b are constants satisfying ak =
√
α2 − β2; ak = −

√
α2 − β2 and

η =
ln( iβ+a

k

iα )+2nπi

a , where n is an integer.
(II) if f(z) is a polynomial solution of (1.7), then either
(II.i) if α = β, then f(z) = Bz+C, where B and C are constants satisfying

B2(1 + α2η2) = 1 for k = 1; (αBη)2 = 1 for k ≥ 2; or
(II.ii) if α 6= β, then f(z) ≡ ± 1

α−β .

In the following, we study the finite order transcendental entire solutions of
the Fermat-type differential-difference equation

(1.8) P 2(z)
[
f (k)(z)

]2
+ [αf(z + η)− βf(z)]

2
= er(z),

where P (z) 6≡ 0 is a polynomial, r(z) is a non-constant polynomial, α 6= 0 and
β are constants, k is a positive integer, and η ∈ C \ {0}. Then we will prove
the following result.

Theorem 1.3. If f(z) is a finite order transcendental entire solution of (1.8),
then there exist three cases:

(I) P (z) reduces to a constant, r(z) is a polynomial with degree 1, and

f(z) =
eaz+a0

2Aak
+
ebz+b0

2Abk
+ d, a 6= ±b,

where A 6= 0, a 6= 0, b 6= 0, d, a0, b0 are constants. In this case, (I.i) if α = β,

then ak = iα(eaη−1)
A , bk = iα(1−ebη)

A ; (I.ii) if α = −β, then ak = iα(eaη+1)
A ,

bk = −iα(1+ebη)
A , d = 0; (I.iii) if α 6= ±β, then ak = iαeaη−iβ

A , bk = iβ−iαebη
A ,

d = 0.
(II) P (z) reduces to a constant, r(z) is a polynomial with degree 1, and

f(z) =
eaz+a0

2Aak
+
eaz+b0

2Aak
+ d, b0 6= a0 + 2nπi,

where A 6= 0, a 6= 0, d, a0, b0 are constants, n is an integer. In this case,

(II.i) if α = β, then ak = iα(eaη−1)(1+eb0−a0 )
A(1−eb0−a0 ) ; (II.ii) if α = −β, then ak =

iα(eaη+1)(1+eb0−a0 )
A(1−eb0−a0 ) , d = 0; (II.iii) if α 6= ±β, then ak = (iαeaη−iβ)(1+eb0−a0 )

A(1−eb0−a0 ) ,

d = 0.
(III) P (z) reduces to a constant, r(z) is a polynomial with degree 1, and

f(z) =
eaz+a0

Aak
+ d, b0 = a0 + 2nπi,
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where A 6= 0, a 6= 0, d, a0, b0 are constants, n is an integer. In this case, (III.i)

if eaη = β
α , α = β, then eaη = 1; (III.ii) if eaη = β

α , α 6= β, then eaη 6= 1,
d = 0.

Remark 1.3. We give the following Examples 1.3-1.5 to show that Case (I)
above does exist.

Example 1.3. If k = 1, α = β = 5−
√
7i

16i , P (z) ≡ 1, and r(z) = − z2 in (1.8),
then

f ′2(z) +

[
5−
√

7i

16i
f(z + η)− 5−

√
7i

16i
f(z)

]2
= e−

z
2

has a solution f(z) = − 1
2e
−z + e

z
2 + 1, where A = 1, a = −1, b = 1

2 , e
−η =

−11−
√
7i

5−
√
7i

, and e
η
2 = −3−

√
7i

5−
√
7i
. Clearly, a 6= ±b, ak = −1 = iα(eaη−1)

A , and

bk = 1
2 = iα(1−ebη)

A .

Example 1.4. If k = 1, α = −3i−
√
15

24 , β = 3i+
√
15

24 , P (z) ≡ −1, and r(z) = 2z
in (1.8), then

f ′2(z) +

[
−3i−

√
15

24
f(z + η) +

−3i−
√

15

24
f(z)

]2
= e2z

has a solution f(z) = − 1
3e

3
2 z − e z2 , where A = −1, a = 3

2 , b = 1
2 , e

η
2 = 9+

√
15i

3−
√
15i

,

and e
3η
2 =

√
15i−39

3−
√
15i

. Clearly, a 6= ±b, ak = 3
2 = iα(eaη+1)

A , and bk = 1
2 =

−iα(1+ebη)
A .

Example 1.5. If k = 1, α = 1, β = (2i+1)+
√
12i+1

2 , P (z) ≡ 1, and r(z) = 3z in
(1.8), then

f ′2(z) +

[
f(z + η)− (2i+ 1) +

√
12i+ 1

2
f(z)

]2
= e3z

has a solution f(z) = 1
2e
z+ 1

4e
2z, where A = 1, a = 1, b = 2, eη = 1+

√
12i+1
2 , and

e2η = i−6+i
√
12i+1

2i . Clearly, a 6= ±b, ak = 1 = iαeaη−iβ
A , and bk = 2 = iβ−iαebη

A .

Remark 1.4. We give the following Examples 1.6-1.8 to show that Case (II)
above does exist.

Example 1.6. If k = 1, α = β = 1, P (z) ≡ 1, and r(z) = 2z+ 1 in (1.8), then

f ′2(z) + [f(z + η)− f(z)]2 = e2z+1

has a solution f(z) = (e+1)
2 ez + 1, where A = 1, a = b = 1, a0 = 0, b0 = 1,

eη = 1 + 1−e
i(1+e) , and n is an integer. Clearly, 1 = b0 6= a0 + 2nπi = 2nπi,

ak = 1 = iα(eaη−1)(1+eb0−a0 )
A(1−eb0−a0 ) .
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Example 1.7. If k = 1, α = 1, β = −1, P (z) ≡ 1, and r(z) = 2z + 1 in (1.8),
then

f ′2(z) + [f(z + η) + f(z)]2 = e2z+1

has a solution f(z) = (e+1)
2 ez, where A = 1, a = b = 1, a0 = 0, b0 = 1,

eη = i(e−1)
1+e − 1, and n is an integer. Clearly, 1 = b0 6= a0 + 2nπi = 2nπi,

ak = 1 = iα(eaη+1)(1+eb0−a0 )
A(1−eb0−a0 ) .

Example 1.8. If k = 1, α = −i, β = −2i, P (z) ≡ 1, and r(z) = 2z + 1 in
(1.8), then

f ′2(z) + [−if(z + η) + 2if(z)]2 = e2z+1

has a solution f(z) = (e+1)
2 ez, where A = 1, a = b = 1, a0 = 0, b0 = 1,

eη = 3+e
1+e , and n is an integer. Clearly, 1 = b0 6= a0 + 2nπi = 2nπi, ak = 1 =

(iαeaη−iβ)(1+eb0−a0 )
A(1−eb0−a0 ) .

Remark 1.5. We give the following Examples 1.9 and 1.10 to show that Case
(III) above does exist.

Example 1.9. If k = 1, α = β = 1, P (z) ≡ 1, and r(z) = 2z in (1.8), then

f ′2(z) + [f(z + 2πi)− f(z)]2 = e2z

has a solution f(z) = ez + 1, where a = b = 1, a0 = b0 = n = 0, and η = 2πi.
Clearly, b0 = 0 = a0 + 2nπi, eaη = 1.

Example 1.10. If k = 1, α = 1, β = e, P (z) ≡ 1, and r(z) = 2z in (1.8), then

f ′2(z) + [f(z + 1)− ef(z)]2 = e2z

has a solution f(z) = ez, where a = b = 1, a0 = b0 = n = 0, and η = 1. Clearly,
b0 = 0 = a0 + 2nπi, eaη = e 6= 1.

Remark 1.6. Actually, if the non-constant polynomial r(z) reduces to a con-
stant in Theorem 1.3, then by using the similar method as in the proof of The-
orem E, we can get Corollary 1.1 immediately. Therefore, the proof is omitted.

Corollary 1.1. Let P (z) 6≡ 0 be a polynomial, α 6= 0 and β be constants, k be
a positive integer, η ∈ C \ {0}. If the equation

(1.9) P 2(z)[f (k)(z)]2 + [αf(z + η)− βf(z)]2 = 1

admits an entire solution of finite order, then there exist two cases:
(I) if f(z) is a transcendental solution of (1.9), then either
(I.i) when k is an odd number, f(z) must satisfy the form that

f(z) =
eaz+b − e−az−b

2akA
+ d,

where A, a, b, d are constants, n is an integer. In this case, (I.i.i) if α = β,

then ak = −2αi
A , η = (2n+1)π

a i; (I.i.ii) if α = −β, then ak = 2αi
A , η = 2nπ

a i,
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d = 0; (I.i.iii) if α 6= ±β, then ak = −(α+β)i
A , η = (2n+1)π

a i or ak = (α−β)i
A ,

η = 2nπ
a i, d = 0; or

(I.ii) when k is an even number and α = ±β, the equation (1.9) does not
have transcendental entire solutions; when k is an even number and α 6= ±β,
f(z) must satisfy the form that

f(z) =
eaz+b + e−az−b

2akA
,

where A, a, b are constants satisfying ak =

√
α2−β2

A ; ak =
−
√
α2−β2

A and η =

ln( iβ+a
kA

iα )+2nπi

a , where n is an integer.
(II) if f(z) is a polynomial solution of (1.9), then either
(II.i) if α = β, then f(z) = Bz+C, where B and C are constants satisfying

B2(1 + α2η2) = 1 for k = 1; (αBη)2 = 1 for k ≥ 2; or
(II.ii) if α 6= β, then f(z) ≡ ± 1

α−β .

Remark 1.7. We give the following Examples 1.11-1.14 to show that Case (I.i)
above does exist.

Example 1.11. If k = 1, α = β = π
2 , and P (z) ≡ −1 in (1.9), then

f ′2(z) +
[π

2
f(z + 2n+ 1)− π

2
f(z)

]2
= 1

has a solution f(z) = − 1
π sinπz + 1, where A = −1, a = πi, η = 2n+ 1, and n

is an integer. Clearly, ak = πi = −2αi
A , η = 2n+ 1 = (2n+1)π

a i.

Example 1.12. If k = 1, α = 1
4 , β = − 1

4 , and P (z) ≡ 1
4 in (1.9), then

1

16
f ′2(z) +

[
1

4
f(z + nπ) +

1

4
f(z)

]2
= 1

has a solution f(z) = 2 sin 2z, where A = 1
4 , a = 2i, η = nπ, and n is an

integer. Clearly, ak = 2i = 2αi
A , η = nπ = 2nπ

a i.

Example 1.13. If k = 1, α = 3
4i , β = 1

4i , and P (z) ≡ −1 in (1.9), then

f ′2(z) +

[
3

4i
f(z + πi)− 1

4i
f(z)

]2
= 1

has a solution f(z) = i sin iz, where A = −1, a = 1, η = πi, and n = 0. Clearly,

ak = 1 = − (α+β)i
A , η = πi = (2n+1)π

a i.

Example 1.14. If k = 1, α = 3π
2i , β = π

2i , and P (z) ≡ 1
2i in (1.9), then

−1

4
f ′2(z) +

[
3π

2i
f(z + n)− π

2i
f(z)

]2
= 1

has a solution f(z) = i
π sin 2πz, where A = 1

2i , a = 2πi, η = n, and n is an

integer. Clearly, ak = 2πi = (α−β)i
A , η = n = 2nπ

a i.



990 J. F. CHEN AND S. Q. LIN

Remark 1.8. We give the following Examples 1.15 and 1.16 to show that Case
(I.ii) above does exist.

Example 1.15. If k = 2, α = 1, β = 0, and P (z) ≡ 1 in (1.9), then

f ′′2(z) +

[
f

(
z − πi

2

)]2
= 1

has a solution f(z) = cos iz, where A = 1, a = 1, η = −πi2 , and n = 0. Clearly,

ak = 1 =

√
α2−β2

A , η = −πi2 =
ln( iβ+a

kA
iα )+2nπi

a .

Example 1.16. If k = 2, α = 1, β = 0, and P (z) ≡ 1 in (1.9), then

f ′′2(z) +
[
f
(
z +

π

2

)]2
= 1

has a solution f(z) = − cos z, where A = 1, a = i, η = π
2 , and n = 0. Clearly,

ak = −1 =
−
√
α2−β2

A , η = π
2 =

ln( iβ+a
kA

iα )+2nπi

a .

Remark 1.9. We give the following Examples 1.17 and 1.18 to show that Case
(II.i) above does exist.

Example 1.17. If k = 1, α = β = 1, and P (z) ≡ 1 in (1.9), then

f ′2(z) +

[
f

(
z +

√
2

2
i

)
− f(z)

]2
= 1

has a solution f(z) =
√

2z, where B =
√

2, η =
√
2
2 i. Clearly, B2(1+α2η2) = 1.

Example 1.18. If k = 2, α = β = 1, and P (z) ≡ 1 in (1.9), then

f ′′2(z) +

[
f

(
z +

√
2

2

)
− f(z)

]2
= 1

has a solution f(z) =
√

2z, where B =
√

2, η =
√
2
2 . Clearly, (αBη)2 = 1.

Remark 1.10. We give the following Example 1.19 to show that Case (II.ii)
above does exist.

Example 1.19. If k = 1, α = 2, β = 1, and P (z) ≡ 1 in (1.9), then

f ′2(z) + [2f(z + η)− f(z)]2 = 1

has a solution f(z) ≡ ±1, where η is a non-zero constant. Clearly, f(z) ≡ ±1 =
± 1
α−β .
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2. Some lemmas

Lemma 2.1 (see [15]). Let f(z) be a finite order ρ transcendental meromorphic
solution of the difference equation

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f), Q(z, f) are difference polynomials in f such that the
total degree of U(z, f) in f and its shifts are n, and that the total degree of
Q(z, f) as a polynomial in f and its shifts are at most n. If U(z, f) just contains
one term of maximal total degree, then for each ε > 0,

m(r, P (z, f)) = O(rρ−1+ε) + S(r, f)

holds possibly outside of an exceptional set with finite logarithmic measure.

Lemma 2.2 (see [17]). Let f(z) be an entire function of finite order ρ with
zeros {z1, z2, . . .} ⊂ C\{0} and a k-fold zero at the origin. Then

f(z) = zkP (z)eQ(z),

where P (z) is the canonical product of f(z) formed with the non-null zeros of
f(z), and Q(z) is a polynomial of degree at most ρ.

Lemma 2.3 (see [17]). If f(z) is a transcendental meromorphic function in
C, then

lim
r→∞

T (r, f)

log r
=∞.

Lemma 2.4 (see [2]). Let f(z) be a meromorphic function such that the order
ρ < +∞, and η ∈ C \ {0}. Then for any ε > 0,

(2.1) T (r, f(z + η)) = T (r, f) +O(rρ−1+ε) +O(log r).

Thus, if f(z) is a finite order ρ transcendental meromorphic function, then we
have

(2.2) T (r, f(z + η)) = T (r, f) + S(r, f).

Lemma 2.5 (see [17]). If meromorphic functions fj(z) (j = 1, 2, . . . , n) (n ≥
2) and entire functions gj(z) (j = 1, 2, . . . , n) (n ≥ 2) satisfy the following
conditions:

(1)
∑n
j=1 fje

gj ≡ 0;

(2) gj − gl are not constants for 1 ≤ j < l ≤ n;
(3) T (r, fj) = o (T (r, egh−gl)) (r →∞, r 6∈ E) for 1 ≤ j ≤ n, 1 ≤ h < l ≤ n,

then we have fj ≡ 0 (j = 1, 2, . . . , n).

Lemma 2.6 (see [17]). Suppose that fj(z) 6≡ 0 (j = 1, 2, . . . , n) (n ≥ 3) are
meromorphic functions such that f1(z), f2(z), . . . , fn−1(z) are non-constants,∑n
j=1 fj(z) ≡ 1 and

n∑
j=1

N

(
r,

1

fj

)
+ (n− 1)

n∑
j=1

N (r, fj) < (λ+ o(1))T (r, fk) ,
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where λ < 1 and k = 1, 2, . . . , n− 1. Then fn(z) ≡ 1.

3. Proofs of Theorems

3.1. Proof of Theorem 1.1

First, we may assume that f(z) is a finite order transcendental entire solution
of (1.4). Next, We will discuss three cases step by step and give the relative
contradictions.

Case 1. If n = m = 1, then (1.4) is changed into the following form

(3.1) f(z)f ′(z) + P 2(z)f(z + η) = Q(z).

Thus, (3.1) can be rewritten as

f(z)f ′(z) = Q(z)− P 2(z)f(z + η).

Combining Lemma 2.1 with (2.2), we get

m(r, f ′(z)) = S(r, f(z)),

and then

T (r, f ′(z)) = m(r, f ′(z)) = S(r, f(z)).

This contradicts our assumption that f(z) is transcendental.
Case 2. If n = m = 2, then (1.4) is changed into the following form

(3.2) [f(z)f ′(z)]2 + P 2(z)[f(z + η)]2 = Q(z).

Thus, (3.2) can be rewritten as

(3.3) [f(z)f ′(z) + iP (z)f(z + η)][f(z)f ′(z)− iP (z)f(z + η)] = Q(z).

It follows that f(z)f ′(z) + iP (z)f(z + η) and f(z)f ′(z) − iP (z)f(z + η) have
finitely many zeros. Combining (3.3) with Lemma 2.2, we know that

f(z)f ′(z) + iP (z)f(z + η) = Q1(z)eh(z)

and

f(z)f ′(z)− iP (z)f(z + η) = Q2(z)e−h(z),

where h(z) is a non-constant polynomial, Q1(z) and Q2(z) are non-zero poly-
nomials such that Q(z) = Q1(z)Q2(z). Thus, we get

(3.4) f(z)f ′(z) =
Q1(z)eh(z) +Q2(z)−h(z)

2

and

(3.5) f(z + η) =
Q1(z)eh(z) −Q2(z)−h(z)

2iP (z)
.

Differentiating (3.5) results in

f ′(z + η) =
P (z)Q′1(z)− P ′(z)Q1(z) + P (z)Q1(z)h′(z)

2iP 2(z)
eh(z)
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− P (z)Q′2(z)− P ′(z)Q2(z)− P (z)Q2(z)h′(z)

2iP 2(z)
e−h(z),

and then

(3.6) f(z + η)f ′(z + η) =
h1(z)e2h(z) − h2(z) + h3(z)e−2h(z)

−4P 3(z)
,

where 
h1(z) = P (z)Q′1(z)Q1(z)− P ′(z)Q2

1(z) + P (z)Q2
1(z)h′(z),

h2(z) = P (z)(Q1(z)Q2(z))′ − 2P ′(z)Q1(z)Q2(z),

h3(z) = P (z)Q′2(z)Q2(z)− P ′(z)Q2
2(z)− P (z)Q2

2(z)h′(z)

for any hj(z) (j = 1, 2, 3) are polynomials. From (3.4) and (3.6), we have

h1(z)e2h(z) − h2(z) + h3(z)e−2h(z)

−4P 3(z)
≡ Q1(z + η)eh(z+η) +Q2(z + η)e−h(z+η)

2
,

i.e.,

h1(z)e2h(z)+h(z+η) − h2(z)eh(z+η) + h3(z)eh(z+η)−2h(z)(3.7)

+ 2P 3(z)Q1(z + η)e2h(z+η) + 2P 3(z)Q2(z + η) ≡ 0.

Note that deg(4h(z)) = deg(2h(z)) = deg(±h(z + η)) = deg(2h(z + η)) ≥ 1,
deg(2h(z)−h(z+η)) ≥ 1, deg[2h(z)+h(z+η)] ≥ 1, deg[−2h(z)−h(z+η)] ≥ 1
and deg[h(z + η) − 2h(z)] ≥ 1. By Lemma 2.5, we have 2P 3(z)Q1(z + η) ≡
2P 3(z)Q2(z+η) ≡ 0. This contradicts the assumption that P (z), Q1(z), Q2(z)
are non-zero polynomials.

Case 3. If n = m > 2, then (1.4) can be rewritten as 1
Q(z) [f(z)f ′(z)]

n
+

P 2(z)
Q(z) f

n(z + η) = 1. By Theorem A, we see that the above equation has no

transcendental entire solutions of finite order. Hence we complete the proof of
Theorem 1.1.

3.2. Proof of Theorem 1.2

From the beginning of Theorem A, we only need to prove that there is no
transcendental entire solutions of the following differential-difference equation

(3.8) [f(z)f ′(z)]n + P (z)[∆ηf(z)] = Q(z),

where n > 2. We may assume that (3.8) has a transcendental entire solution
f(z).

Differentiating (3.8) results in

nf ′n−1(z)[fn−1(z)f ′
2
(z) + fn(z)f ′′(z)](3.9)

= Q′(z)− P ′(z)[∆ηf(z)]− P (z)[∆ηf
′(z)].

Substituting (3.8) into (3.9) yields

f ′n−1(z)

[
nfn−1(z)f ′2(z) + nfn(z)f ′′(z)− P ′(z)

P (z)
fn(z)f ′(z)

]
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= Q′(z)− P ′(z)

P (z)
Q(z)− P (z)[∆ηf

′(z)].

Denote ϕ(z) = nfn−1(z)f ′2(z) + nfn(z)f ′′(z)− P ′(z)
P (z) f

n(z)f ′(z), g(z) = f ′(z),

and then we rewrite the above equation as the form

(3.10) gn−1(z)ϕ(z) = Q′(z)− P ′(z)

P (z)
Q(z)− P (z)[∆ηg(z)].

Noting that n− 1 ≥ 2, by Lemma 2.1, we have

m(r, ϕ(z)) = S(r, g(z)), m(r, g(z)ϕ(z)) = S(r, g(z)).

We see that ϕ(z) 6≡ 0, otherwise (f2(z))′n = C1P (z), where C1 is a non-zero
constant, a contradiction. And since f(z) is a transcendental entire solution,
N(r, ϕ(z)) = S(r, g(z)). Thus it follows that

T (r, g(z)) = m(r, g(z)) ≤ m(r, g(z)ϕ(z)) +m

(
r,

1

ϕ(z)

)
≤ m(r, ϕ(z)) +N(r, ϕ(z)) + S(r, g(z)) = S(r, g(z)),

i.e., T (r, f ′(z)) = T (r, g(z)) ≤ S(r, g(z)) = S(r, f ′(z)), a contradiction. Hence
we complete the proof of Theorem 1.2.

3.3. Proof of Theorem 1.3

Assume that f(z) is a finite order transcendental entire solution satisfying
(1.8). We rewrite (1.8) as

(3.11)
[P (z)f (k)(z) + i(αf(z + η)− βf(z))]

× [P (z)f (k)(z)− i(αf(z + η)− βf(z))] = er(z).

It then follows that P (z)f (k)(z) + i(αf(z + η) − βf(z)) and P (z)f (k)(z) −
i(αf(z + η)− βf(z)) have no zeros. By Lemma 2.2, we have

(3.12)

{
P (z)f (k)(z) + i(αf(z + η)− βf(z)) = er1(z);

P (z)f (k)(z)− i(αf(z + η)− βf(z)) = er2(z),

where r(z) is a non-constant polynomial such that r(z) = r1(z) + r2(z). Thus

(3.13)

{
f (k)(z) = er1(z)+er2(z)

2P (z) ;

αf(z + η)− βf(z) = er1(z)−er2(z)

2i .

By mathematical induction, we can deduce that

(3.14) (er1(z))(k) = er1(z)[r
(k)
1 (z) + · · ·+ r′k1 (z)] = er1(z)M(z),

(3.15) (−er2(z))(k) = er2(z)[−(r
(k)
2 (z) + · · ·+ r′k2 (z))] = er2(z)N(z),
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where M(z) = r
(k)
1 (z) + · · · + r′k1 (z), N(z) = −[r

(k)
2 (z) + · · · + r′k2 (z)]. From

(3.13)-(3.15), we get

(3.16) αf (k)(z + η)− βf (k)(z) ≡ M(z)er1(z) +N(z)er2(z)

2i
.

Then, combining (3.13) with (3.16), we have

iβP (z+η)+M(z)P (z)P (z+η)

iαP (z)
er1(z)−r2(z+η)

+
iβP (z + η)+N(z)P (z)P (z+η)

iαP (z)
er2(z)−r2(z+η) − er1(z+η)−r2(z+η) ≡ 1.

(3.17)

Since r(z) is a non-constant polynomial, r1(z) and r2(z) cannot be constants
simultaneously. Otherwise, r(z) is a constant. Now we assume that at least
one of r1(z) and r2(z) is a non-constant polynomial. To this end, we divide our
discussion into three cases.

Case 1. If r1(z) is a constant and r2(z) is a non-constant polynomial, then
M(z) ≡ 0 and r(z) is a non-constant polynomial that satisfies the assumption.

Now we claim that iβP (z+η)+M(z)P (z)P (z+η)
iαP (z) 6≡ 0, that is, iβP (z + η) 6≡

0. Otherwise, we may assume that iβP (z+η)+M(z)P (z)P (z+η)
iαP (z) ≡ 0. By (3.17), we

have

iβP (z + η) +N(z)P (z)P (z + η)

iαP (z)
er2(z)−r2(z+η) − er1(z+η)−r2(z+η) ≡ 1.

We denote g(z) = er1(z+η)−r2(z+η). Then, using the second main theorem of
Nevanlinna theory and Lemma 2.3, we have

T (r, g) ≤ N(r, g) +N(r,
1

g
) +N(r,

1

g + 1
) + S(r, g)

≤ N

 1
iβP (z+η)+N(z)P (z)P (z+η)

iαP (z) er2(z)−r2(z+η)

+ S(r, g)

≤ O(log r) + S(r, g) = S(r, g),

which is a contradiction to er1(z+η)−r2(z+η) being transcendental entire func-
tion. Thus, the claim is proved. Note that r1(z) is a constant and r2(z) is not
a constant. Then both r1(z)− r2(z + η) and r1(z + η)− r2(z + η) are not con-

stants. Hence, iβP (z+η)+M(z)P (z)P (z+η)
iαP (z) er1(z)−r2(z+η) and er1(z+η)−r2(z+η) are

not constants. Combining (3.17) with Lemma 2.6, we have

(3.18)
iβP (z + η) +N(z)P (z)P (z + η)

iαP (z)
er2(z)−r2(z+η) ≡ 1,

which implies that r2(z) − r2(z + η) is a constant. Then deg(r2(z)) = 1.
Assume that r2(z) = bz + b0, where b 6= 0 and b0 are constants. Thus, we have
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N(z) ≡ −bk. Substituting it into (3.18) yields

(3.19)
iβP (z + η)− bkP (z)P (z + η)

iαP (z)
e−bη ≡ 1.

From the above identity, we can deduce that P (z) is a constant, say A (6= 0).
And since r1(z) is a constant, we set er1(z) = c1 6= 0. Then, it follows from
(3.13) that

(3.20) f (k)(z) =
c1 + ebz+b0

2A
, f(z) =

c1
2Ak!

zk +
ebz+b0

2Abk
+ S(z),

where S(z) is a polynomial with deg(S(z)) ≤ k − 1. Further, we obtain from

(3.17)-(3.19) that α = β, ebη = 1− bkA
iα . Combining (3.13) with (3.20), we have

f(z + η)− f(z) ≡ c1 − ebz+b0
2iα

;

c1
2Ak!

(z + η)k − c1
2Ak!

zk + S(z + η)− S(z)− c1
2iα
≡ (− 1

2iα
− ebη − 1

2Abk
)ebz+b0 .

Then,
c1

2Ak!
(z + η)k − c1

2Ak!
zk − c1

2iα
≡ S(z)− S(z + η).

Since c1 6= 0 is a constant, the maximum degree of the left-hand side of the
above identity is k−1 and the degree of the right-hand side of the above identity
is at most k − 2, a contradiction.

Case 2. If r1(z) is a non-constant polynomial and r2(z) is a constant, then
N(z) ≡ 0 and r(z) is a non-constant polynomial that satisfies the assumption.
Thus (3.17) can be written as

iβP (z + η) +M(z)P (z)P (z + η)

iαP (z)
er1(z)−r2(z+η)

− er1(z+η)−r2(z+η) ≡ iαP (z)− iβP (z + η)

iαP (z)
.

(3.21)

Now we distinguish iαP (z) − iβP (z + η) ≡ 0, iαP (z) − iβP (z + η) 6≡ 0 two
subcases to get the contradictions.

Subcase 2.1. If iαP (z)− iβP (z + η) ≡ 0, then by (3.21),

(3.22)
iβP (z + η) +M(z)P (z)P (z + η)

iαP (z)
er1(z)−r1(z+η) ≡ 1,

which implies that r1(z) − r1(z + η) is a constant. Then deg(r1(z)) = 1.
Assume that r1(z) = az+a0, where a 6= 0 and a0 are constants. Thus, we have
M(z) ≡ ak. Substituting it into (3.22) yields

(3.23)
iβP (z + η) + akP (z)P (z + η)

iαP (z)
e−aη ≡ 1.
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From the above identity, we can deduce that P (z) is a constant again, say
A (6= 0). And since r2(z) is a constant, we set er2(z) = c2 6= 0. Then, it follows
from (3.13) that

(3.24) f (k)(z) =
eaz+a0 + c2

2A
, f(z) =

c2
2Ak!

zk +
eaz+a0

2Aak
+ T (z),

where T (z) is a polynomial with deg(T (z)) ≤ k − 1. Further, we obtain from

(3.21)-(3.23) that α = β, eaη = 1+ akA
iα . Combining (3.13) with (3.24), we have

f(z + η)− f(z) ≡ eaz+a0 − c2
2iα

,

c2
2Ak!

(z + η)k − c2
2Ak!

zk + T (z + η)− T (z) +
c2

2iα
≡ (

1

2iα
+

1− eaη

2Aak
)eaz+a0 .

Then,
c2

2Ak!
(z + η)k − c2

2Ak!
zk +

c2
2iα
≡ T (z)− T (z + η).

With the above identity, we can also get a similar contradiction as in Case 1.
Subcase 2.2. If iαP (z)− iβP (z + η) 6≡ 0, then by (3.21),

(3.25) H12(z)er1(z) +H11(z)eh0(z) ≡ 0,

where h0(z) ≡ 0 and{
H12(z) = iβP (z+η)+M(z)P (z)P (z+η)

iαP (z)c2
− 1

c2
er1(z+η)−r1(z),

H11(z) = − iαP (z)−iβP (z+η)
iαP (z) .

Noting that deg(r1(z + η) − r1(z)) = deg(r1(z)) − 1 < deg(r1(z)) and using
Lemma 2.5, we see that H1j(z) ≡ 0 (j = 1, 2). By H11(z) ≡ 0, we have
iαP (z)− iβP (z + η) ≡ 0, which contradicts that iαP (z)− iβP (z + η) 6≡ 0.

Case 3. If r1(z) and r2(z) are non-constant polynomials, then (3.17) can
be written as

iβP (z + η) +M(z)P (z)P (z + η)

iαP (z)
er1(z)

+
iβP (z + η) +N(z)P (z)P (z + η)

iαP (z)
er2(z) − er1(z+η) − er2(z+η) ≡ 0.

(3.26)

Next three subcases will be considered in the following.
Subcase 3.1. If deg(r1(z)) > deg(r2(z)) ≥ 1, then r(z) is a non-constant

polynomial that satisfies the assumption. Thus (3.26) can be written as

(3.27) H22(z)er1(z) +H21(z)eh0(z) ≡ 0,

where h0(z) ≡ 0 and{
H22(z) = iβP (z+η)+M(z)P (z)P (z+η)

iαP (z) − er1(z+η)−r1(z),
H21(z) = iβP (z+η)+N(z)P (z)P (z+η)

iαP (z) er2(z) − er2(z+η).

Noting that deg(r1(z)) > deg(r2(z)), deg(r1(z + η) − r1(z)) = deg(r1(z)) −
1 < deg(r1(z)) and using Lemma 2.5, we see that H2j(z) ≡ 0 (j = 1, 2). By
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H22(z) ≡ H21(z) ≡ 0, we have deg(r1(z)) = deg(r2(z)) = 1, which contradicts
that deg(r1(z)) > deg(r2(z)) ≥ 1.

Subcase 3.2. If deg(r2(z)) > deg(r1(z)) ≥ 1, then r(z) is a non-constant
polynomial that satisfies the assumption. Thus (3.26) can be written as

(3.28) H32(z)er2(z) +H31(z)eh0(z) ≡ 0,

where h0(z) ≡ 0 and{
H32(z) = iβP (z+η)+N(z)P (z)P (z+η)

iαP (z) − er2(z+η)−r2(z),
H31(z) = iβP (z+η)+M(z)P (z)P (z+η)

iαP (z) er1(z) − er1(z+η).

By the arguments similar to that in Subcase 3.1, we can get a contradiction.
Subcase 3.3. If deg(r1(z)) = deg(r2(z)) = n ≥ 1, then we set r1(z) =

anz
n + an−1z

n−1 + · · · + a0, r2(z) = bnz
n + bn−1z

n−1 + · · · + b0, where an(6=
0), an−1, . . . , a0, bn(6= 0), bn−1, . . . , b0 are constants, n is an integer. Thus, we
have r(z) = (an + bn)zn + (an−1 + bn−1)zn−1 + · · · + a0 + b0. Since r(z) is a
non-constant polynomial, we see that, for all j = 1, 2, . . . , n, at least one of
aj 6= −bj .

To prove deg(r1(z)) = deg(r2(z)) = 1, we discuss two subcases bn 6= an and
bn = an.

Subcase 3.3.1. If bn 6= an, then (3.26) can be written as

(3.29) H42(z)er1(z) +H41(z)er2(z) ≡ 0,

where {
H42(z) = iβP (z+η)+M(z)P (z)P (z+η)

iαP (z) − er1(z+η)−r1(z),
H41(z) = iβP (z+η)+N(z)P (z)P (z+η)

iαP (z) − er2(z+η)−r2(z).
It is easy to get that deg(r1(z + η)− r1(z)) = deg(r2(z + η)− r2(z)) = n− 1.
Noting that bn 6= an, we see that deg(r1(z+η)−r1(z)) = deg(r2(z+η)−r2(z)) <
deg(r1(z) − r2(z)) = n. Therefore, using Lemma 2.5, we have H4j(z) ≡ 0. By
H42(z) ≡ H41(z) ≡ 0, we see that r1(z + η)− r1(z), r2(z + η)− r2(z) must be
constants. Then deg(r1(z)) = deg(r2(z)) = 1. Assume that r1(z) = az + a0,
r2(z) = bz + b0, where b 6= 0, a 6= 0, a0, b0 are constants with a 6= b. Further,
by the fact that, for all j = 1, 2, . . . , n, at least one of aj 6= −bj , we have
a 6= −b. Hence a 6= ±b.

In the following, since r1(z) = az + a0, r2(z) = bz + b0, we get M(z) ≡ ak,
N(z) ≡ −bk. Substituting it into H42(z) ≡ H41(z) ≡ 0 yields

(3.30) iβP (z + η) + akP (z)P (z + η) ≡ iαP (z)eaη

and

(3.31) iβP (z + η)− bkP (z)P (z + η) ≡ iαP (z)ebη,

which imply that P (z) must be a constant, say A( 6= 0). Then (3.30), (3.31) can
be written as

ak =
iαeaη − iβ

A
, bk =

iβ − iαebη

A
.
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Also, it follows from (3.13) that

(3.32) f (k)(z) =
eaz+a0 + ebz+b0

2A
, f(z) =

eaz+a0

2Aak
+
ebz+b0

2Abk
+ U(z),

where U(z) is a polynomial with deg(U(z)) ≤ k − 1.

If α = β, then ak = iα(eaη−1)
A , bk = iα(1−ebη)

A . Combining (3.13) with (3.32),
we have α[U(z + η) − U(z)] ≡ 0. By α 6= 0, we get U(z) ≡ d, where d is a
constant. Then,

f(z) =
eaz+a0

2Aak
+
ebz+b0

2Abk
+ d.

If α = −β, then ak = iα(eaη+1)
A , bk = −iα(1+ebη)

A . In the same way, we have
U(z) ≡ 0. Then,

f(z) =
eaz+a0

2Aak
+
ebz+b0

2Abk
.

If α 6= ±β, then ak = iαeaη−iβ
A , bk = iβ−iαebη

A . Similarly, we have U(z) ≡ 0.
Then,

f(z) =
eaz+a0

2Aak
+
ebz+b0

2Abk
.

This belongs to Case (I) in Theorem 1.3.
Subcase 3.3.2. If bn = an, then (3.26) can be written as

(3.33) H51(z)er1(z) ≡ 0,

where

H51(z) =
iβP (z + η) +M(z)P (z)P (z + η)

iαP (z)

+
iβP (z + η) +N(z)P (z)P (z + η)

iαP (z)
er2(z)−r1(z)

− er1(z+η)−r1(z) − er2(z+η)−r1(z).

Since er1(z) 6≡ 0, we have H51(z) ≡ 0. Then

iβP (z + η) +M(z)P (z)P (z + η)

iαP (z)

+
iβP (z + η) +N(z)P (z)P (z + η)

iαP (z)
er2(z)−r1(z)

− er1(z+η)−r1(z) − er2(z+η)−r1(z) ≡ 0.

(3.34)

If n ≥ 2, then deg(r2(z)− r2(z + η)) = deg(r1(z + η)− r1(z)) = n− 1 ≥ 1. By
bn = an, we see that deg(r2(z + i) − r1(z + j)) ≤ n − 1 (i, j = 0, η). Further,
if deg(r2(z+ i)− r1(z+ j)) < n− 1 (i, j = 0, η), then (3.34) can be written as[

iβP (z + η) +N(z)P (z)P (z + η)

iαP (z)
er2(z)−r1(z) − er2(z+η)−r1(z)
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+
iβP (z + η) +M(z)P (z)P (z + η)

iαP (z)

]
− er1(z+η)−r1(z) ≡ 0.

Thus, using Lemma 2.5, we have −1 ≡ 0, which is absurd; if deg(r2(z + i) −
r1(z+ j)) = n−1 (i, j = 0, η), then applying Lemma 2.5 to (3.34), we can also
get a similar contradiction as above. Therefore, we have n = 1. Assume that
r1(z) = az + a0, r2(z) = az + b0, where a 6= 0, a0, b0 are constants. It can be
seen that r(z) is a non-constant polynomial that satisfies the assumption.

In the following, since r1(z) = az+ a0, r2(z) = az+ b0, we get that M(z) ≡
ak, N(z) ≡ −ak. Substituting it into (3.34) yields

(iβ + iβeb0−a0)P (z + η)− iαeaη[1 + eb0−a0 ]P (z)

≡ − (ak − akeb0−a0)P (z)P (z + η).
(3.35)

Next we will divide our argument into two subcases respectively.
Subcase 3.3.2.1. When b0 6= a0 + 2nπi for some integer n, it follows by

(3.35) that P (z) must be constant, say A( 6= 0). Then (3.35) can be rewritten
as

(3.36) ak =
(iαeaη − iβ)(1 + eb0−a0)

A(1− eb0−a0)
.

From (3.13), we have

(3.37) f (k)(z) =
eaz+a0 + eaz+b0

2A
, f(z) =

eaz+a0

2Aak
+
eaz+b0

2Aak
+W (z),

where W (z) is a polynomial with deg(W (z)) ≤ k − 1.

If α = β, then ak = iα(eaη−1)(1+eb0−a0 )
A(1−eb0−a0 ) . From (3.13), (3.36) and (3.37), we

have α[W (z + η) − W (z)] ≡ 0. By α 6= 0, we get W (z) ≡ d, where d is a
constant. Then,

f(z) =
eaz+a0

2Aak
+
eaz+b0

2Aak
+ d.

If α = −β, then ak = iα(eaη+1)(1+eb0−a0 )
A(1−eb0−a0 ) . In the same way, we have W (z) ≡

0. Then,

f(z) =
eaz+a0

2Aak
+
eaz+b0

2Aak
.

If α 6= ±β, then ak = (iαeaη−iβ)(1+eb0−a0 )
A(1−eb0−a0 ) . Similarly, we have W (z) ≡ 0.

Then,

f(z) =
eaz+a0

2Aak
+
eaz+b0

2Aak
.

This belongs to Case (II) in Theorem 1.3.
Subcase 3.3.2.2. When b0 = a0 + 2nπi for some integer n, (3.35) can be

written as

(3.38) 2iβP (z + η)− 2iαeaηP (z) ≡ 0.
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If αeaη = −β or αeaη 6= ±β, then by (3.38), it follows that P (z) ≡ 0, which

contradicts that P (z) 6≡ 0. This means that αeaη = β, that is, eaη = β
α and

thus we deduce from (3.38) that P (z) must be constant, say A ( 6= 0). It follows
from (3.13) that

(3.39) f (k)(z) =
eaz+a0

A
, f(z) =

eaz+a0

Aak
+ V (z),

where V (z) is a polynomial with deg(V (z)) ≤ k − 1.
If α = β, then eaη = 1. Combining (3.13) with (3.39), we have α[V (z+ η)−

V (z)] ≡ 0. By α 6= 0, we get V (z) ≡ d, where d is a constant. Then,

f(z) =
eaz+a0

Aak
+ d.

If α 6= β, then eaη 6= 1. In the same way, we have V (z) ≡ 0. Then,

f(z) =
eaz+a0

Aak
.

This belongs to Case (III) in Theorem 1.3. Hence we complete the proof of
Theorem 1.3.
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[13] L. Wu, C. He, W. Lü, and F. Lü, Existence of meromorphic solutions of some generalized

Fermat functional equations, Aequationes Math. 94 (2020), no. 1, 59–69. https://doi.

org/10.1007/s00010-019-00683-4

[14] C.-C. Yang, A generalization of a theorem of P. Montel on entire functions, Proc. Amer.

Math. Soc. 26 (1970), 332–334. https://doi.org/10.2307/2036399

[15] C.-C. Yang and I. Laine, On analogies between nonlinear difference and differen-
tial equations, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 1, 10–14. http:

//projecteuclid.org/euclid.pja/1262271517

[16] C.-C. Yang and P. Li, On the transcendental solutions of a certain type of nonlinear
differential equations, Arch. Math. (Basel) 82 (2004), no. 5, 442–448. https://doi.org/

10.1007/s00013-003-4796-8

[17] C.-C. Yang and H.-X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics
and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.

[18] C. P. Zeng, B. M. Deng, and M. L. Fang, Entire solutions of systems of complex
differential-difference equations, Acta Math. Sinica (Chin. Ser.) 62 (2019), no. 1, 123–

136.

Jun-Fan Chen

School of Mathematics and Statistics &
Fujian Key Laboratory of Mathematical Analysis and Applications

Fujian Normal University

Fuzhou 350117, P. R. China
Email address: junfanchen@163.com

Shu-Qing Lin
School of Mathematics and Statistics &

Fujian Key Laboratory of Mathematical Analysis and Applications

Fujian Normal University
Fuzhou 350117, P. R. China

Email address: shuqinglin1996@163.com

https://doi.org/10.1007/s00010-016-0443-x
https://doi.org/10.1007/s10114-017-6484-9
https://doi.org/10.1007/s00010-019-00683-4
https://doi.org/10.1007/s00010-019-00683-4
https://doi.org/10.2307/2036399
http://projecteuclid.org/euclid.pja/1262271517
http://projecteuclid.org/euclid.pja/1262271517
https://doi.org/10.1007/s00013-003-4796-8
https://doi.org/10.1007/s00013-003-4796-8

