• Title/Summary/Keyword: Fast Locking

Search Result 63, Processing Time 0.025 seconds

Fast locking PLL in moble system using improved PFD (모바일 시스템에 필요한 향상된 위상주파수검출기를 이용한 위상고정루프)

  • Kam, Chi-Uk;Kim, Seung-Hoon;Hwang, In-Ho;Lee, Jong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.246-248
    • /
    • 2007
  • This paper presents fast locking PLL(Phase Locked Loop) that can improve a jitter noise characteristics and acquisition process by designing a PFD(Phase Frequency Detector) circuit. The conventional PFD has not only a jitter noise caused from such a demerit of the wide dead zone and duty cycle, but also a long delay interval that makes a high speed operation unable. The advanced PFD circuit using the TSPC(True Single Phase Clocking) circuit is proposed, and it has excellent performances such as 1.75us of locking time and independent duty cycle characteristic. It is fabricated in a 0.018-${\mu}m$ CMOS process, and 1.8v supply voltage, and 25MHz of input oscillator frequency, and 800MHz of output frequency and is simulated by using ADE of Cadence.

  • PDF

A Design of Phase-Frequency Detector for Low Jitter and Fast Locking Time of PLL (PLL 고정시간의 저감대책 수립과 저 지터 구현을 위한 위상-주파수 감지기의 설계)

  • Jung, S.M.;Lee, J.S.;Kim, J.R.;Woo, Y.S.;Sung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.742-744
    • /
    • 1999
  • In this paper, a new precharge type PFD for fast locking time of PLL is suggested. It is realized by inserting NMOS transistor and inverter into the precharge part of PFD for isolating the reset of the Up signal from the feedback signal. The new precharge type PFD generates the Up signal while the feedback signal is fixed at a high level. Therefore the new PFD output is increased than the conventional precharge type PFD output. As a result of the increased PFD output, fast locking of PLLs is achieved. Additionally, with control the falling time of the inverter, the dead-zone is reduced and the jitter characteristics are improved. The whole characteristics of PFD and PLL are simulated by using HSPICE. Simulation results show that the dead-zone is 20ps and the locking time of PLL using the new PFD is 38ns at the 350MHz frequency of referecne signal. This value is quite small compared with conventional PFD.

  • PDF

A Fast-Locking Fractional-N PLL with Multiple Charge Pumps and Capacitance Scaling Scheme (Capacitance Scaling 구조와 여러 개의 전하 펌프를 이용한 고속의 ${\Sigma}{\Delta}$ Fractional-N PLL)

  • Kwon, Tae-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.90-96
    • /
    • 2006
  • A novel ${\Sigma}{\Delta}$ fractional-N PLL architecture for fast locking and fractional spur suppressing is proposed based on the capacitance scaling scheme. It changes the effective capacitance of loop filter (LF) by increasing and decreasing current to the capacitor via different paths with multiple charge pumps. The effective capacitance of loop filter (LF) can be scaled up/down depending on operating status while keeping LF capacitors small enough to be integrated into a single PLL chip. Fractional spurs suppressing have been achieved by reducing the magnitude of charge pump current when the PLL is in-lock without degrading fast locking characteristic. It has been simulated by HSPICE in a CMOS $0.35{\mu}m$ process, and shows flat locking time is less than $8{\mu}s$ with the small size of LF capacitors, 200pF and 17pF, and $2.8k{\Omega}$ resistor.

A Fast Locking Dual-Loop PLL with Adaptive Bandwidth Scheme (루프 대역폭 조절기를 이용한 빠른 위상 고정 시간을 갖는 이중 루프 위상고정루프)

  • Song, Youn-Gui;Choi, Young-Shig
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.65-70
    • /
    • 2008
  • A novel fast locking dual-loop integer-N phase locked loop(PLL) with adaptive bandwidth scheme is presented. When the PLL is out-of-lock, bandwidth becomes much wider than 1/10 of channel spacing with the wide bandwidth loop. When the PLL is near in-lock, bandwidth becomes narrower than 1/10 of channel spacing with the narrow bandwidth loop. The proposed PLL is designed based on a $0.35{\mu}m$ CMOS process with a 3.3V supply voltage. Simulation results show the fast look time of $50{\mu}s$ for an 80MHz frequency jump in a 200KHz channel spacing PLL with almost 14 times wider bandwidth than the channel spacing.

Initial Frequency Preset Technique for Fast Locking Fractional-N PLL Synthesizers

  • Sohn, Jihoon;Shin, Hyunchol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.534-542
    • /
    • 2017
  • This paper presents a fast locking technique for a fractional-N PLL frequency synthesizer. The technique directly measures $K_{VCO}$ on a chip, computes the VCO's target tuning voltage for a given target frequency, and directly sets the loop filter voltage to the target voltage before the PLL begins the normal closed-loop locking process. The closed-loop lock time is significantly minimized because the initial frequency of the VCO are put very close to the desired final target value. The proposed technique is realized and designed for a 4.3-5.3 GHz fractional-N synthesizer in 65 nm CMOS and successfully verified through extensive simulations. The lock time is less than $12.8{\mu}s$ over the entire tuning range. Simulation verifications demonstrate that the proposed method is very effective in reducing the synthesizer lock time.

Fast locking single capacitor loop filter PLL with Early-late detector (Early-late 감지기를 사용한 고속 단일 커패시터 루프필터 위상고정루프)

  • Ko, Ki-Yeong;Choi, Yong-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.339-344
    • /
    • 2017
  • A novel structure of phase locked loop (PLL) which has small size and fast locking time with Early-late detector, Duty-rate modulator, and Lock status indicator (LSI) is proposed in this paper. The area of loop filter usually occupying the larger portion of the chip is minimized using a single small capacitor. While the conventional PLL with a single capacitor loop filter cannot work stably, the proposed PLL with two charge pumps works stably because the output voltage waveform of the proposed a single capacitor loop filter is the same as the output voltage waveform of the conventional 2nd-order loop filter. The two charge pumps are controlled by the Early-late detector which detects early-late status of UP and DN signals, and Duty-rate modulator which generates a steady duty-rate signal. Fast locking time is achieved using LSI. It has been simulated and proved by HSPICE in a CMOS $0.18{\mu}m$ 1.8V process.

Design of Dual PFD with Improved Phase Locking Time (위상동기시간을 개선한 Dual PFD 설계)

  • 이준호;손주호;김선홍;김동용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.275-278
    • /
    • 1999
  • In this paper, Dual PFD(Phase Frequency Detector) with improved phase locking time is proposed. The proposed PFD consists of positive and negative edge triggered D flip-flop. In order to confirm the characteristics of proposed PFD, HSPICE simulations are performed using a 0.25${\mu}{\textrm}{m}$ CMOS process. As a result of simulations, the proposed PFD has a characteristic of fast phase locking time with dead zone free.

  • PDF

Fast Locking FLL (Frequency Locked Loop) For High - speed Wireline Transceiver (고속 locking time을 갖는 Frequency Locked Loop(FLL))

  • Song, Min-Young;Lee, In-Ho;Kwak, Young-Ho;Kim, Chul-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.509-510
    • /
    • 2006
  • FLL (Frequency Locked Loop) is the core block for high-speed transceiver. It incorporates a PLL for fine locking action, and a coarse controller for coarse locking action. A coarse controller compares frequencies coarsely and is applied to detected frequency difference directly. Compare to conventional FLL, frequency is applied to proposed FLL. Proposed FLL in this paper achieves only 5 cycles for coarse lock and total frequency locking time is 5 times faster than conventional FLL. Thus, proposed FLL is more useful to Ethernet transceiver application that requires high-speed data transfer than conventional FLL. Proposed FLL is based on $0.18{\mu}m$ process.

  • PDF

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

A Fast Locking Phase-Locked Loop using a New Dual-Slope Phase Frequency Detector and Charge Pump Architecture (위상고정 시간이 빠른 새로운 듀얼 슬로프 위상고정루프)

  • Park, Jong-Ha;Kim, Hoon;Kim, Hee-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.82-87
    • /
    • 2008
  • This paper presents a new fast locking dual-slope phase-locked loop. The conventional dual-slope phase-locked loop consists of two charge pumps and two phase-frequency detectors. In this paper, the dual-slope phase-locked loop was achieved with a charge pump and a phase-frequency detector as adjusting a current of the charge pump according to the phase difference. The proposed circuit was verified by HSPICE simulation with a $0.35{\mu}m$ CMOS standard process parameter. The phase locking time of the proposed dual-slope phase-locked loop was $2.2{\mu}s$ and that of the single-slope phase-locke loop was $7{\mu}s$.