• Title/Summary/Keyword: Existence Value

Search Result 871, Processing Time 0.029 seconds

BOUNDARY VALUE PROBLEMS FOR THE STATIONARY NORDSTRÖM-VLASOV SYSTEM

  • Bostan, Mihai
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.743-766
    • /
    • 2010
  • We study the existence of weak solution for the stationary Nordstr$\ddot{o}$m-Vlasov equations in a bounded domain. The proof follows by fixed point method. The asymptotic behavior for large light speed is analyzed as well. We justify the convergence towards the stationary Vlasov-Poisson model for stellar dynamics.

NONLINEAR BIHARMONIC EQUATION WITH POLYNOMIAL GROWTH NONLINEAR TERM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.379-391
    • /
    • 2015
  • We investigate the existence of solutions of the nonlinear biharmonic equation with variable coefficient polynomial growth nonlinear term and Dirichlet boundary condition. We get a theorem which shows that there exists a bounded solution and a large norm solution depending on the variable coefficient. We obtain this result by variational method, generalized mountain pass geometry and critical point theory.

ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO 2D g-NAVIER-STOKES EQUATIONS

  • Quyet, Dao Trong
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.505-518
    • /
    • 2014
  • Considered here is the first initial boundary value problem for the two-dimensional g-Navier-Stokes equations in bounded domains. We first study the long-time behavior of strong solutions to the problem in term of the existence of a global attractor and global stability of a unique stationary solution. Then we study the long-time finite dimensional approximation of the strong solutions.

ON SOME BEHAVIOR OF INTEGRAL POINTS ON A HYPERBOLA

  • Kim, Yeonok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1243-1259
    • /
    • 2013
  • In this paper, we study the root system of rank 2 hyperbolic Kac-Moody algebras. We give some sufficient conditions for the existence of imaginary roots of square length $-2k(k{\in}\mathbb{Z}_{>0}$. We also give several relations between the integral points on the hyperbola $\mathfrak{h}$ to show that the value of the symmetric bilinear form of any two integral points depends only on the number of integral points between them. We also give some generalizations of Binet formula and Catalan's identity.

GLOBAL SOLUTIONS OF THE EXPONENTIAL WAVE EQUATION WITH SMALL INITIAL DATA

  • Huh, Hyungjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.811-821
    • /
    • 2013
  • We study the initial value problem of the exponential wave equation in $\math{R}^{n+1}$ for small initial data. We shows, in the case of $n=1$, the global existence of solution by applying the formulation of first order quasilinear hyperbolic system which is weakly linearly degenerate. When $n{\geq}2$, a vector field method is applied to show the stability of a trivial solution ${\phi}=0$.

GLOBAL SOLUTION AND BLOW-UP OF LOGARITHMIC KLEIN-GORDON EQUATION

  • Ye, Yaojun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.281-294
    • /
    • 2020
  • The initial-boundary value problem for a class of semilinear Klein-Gordon equation with logarithmic nonlinearity in bounded domain is studied. The existence of global solution for this problem is proved by using potential well method, and obtain the exponential decay of global solution through introducing an appropriate Lyapunov function. Meanwhile, the blow-up of solution in the unstable set is also obtained.

MULTIPLE SOLUTIONS FOR A CLASS OF THE SYSTEMS OF THE CRITICAL GROWTH SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.389-402
    • /
    • 2008
  • We show the existence of at least two solutions for a class of systems of the critical growth nonlinear suspension bridge equations with Dirichlet boundary condition and periodic condition. We first show that the system has a positive solution under suitable conditions, and next show that the system has another solution under the same conditions by the linking arguments.

  • PDF

AN OPTIMAL CONTROL FOR THE WAVE EQUATION WITH A LOCALIZED NONLINEAR DISSIPATION

  • Kang, Yong-Han
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.171-188
    • /
    • 2006
  • We consider the problem of an optimal control of the wave equation with a localized nonlinear dissipation. An optimal control is used to bring the state solutions close to a desired profile under a quadratic cost of control. We establish the existence of solutions of the underlying initial boundary value problem and of an optimal control that minimizes the cost functional. We derive an optimality system by formally differentiating the cost functional with respect to the control and evaluating the result at an optimal control.

  • PDF

Guaranteed cost control for singular systems with time delays using LMI

  • Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.44.1-44
    • /
    • 2002
  • This paper is concerned with the problem of designing a guaranteed cost state feedback controller for singular systems with time-varying delays. The sufficient condition for the existence of a guaranteed cost controller, the controller design method, and the optimization problem to get the upper bound of guaranteed cost function are proposed by LMI(linear matrix inequality), singular value decomposition, Schur complements, and change of variables. Since the obtained sufficient conditions can be changed to LMI form, all solutions including controller gain and upper bound of guaranteed cost function can be obtained simultaneously.

  • PDF