1 |
L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061-1083. https://doi.org/10.2307/2373688
DOI
|
2 |
X. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc. 50 (2013), no. 1, 275-283. https://doi.org/10.4134/BKMS.2013.50.1.275
DOI
|
3 |
T. Hiramatsu, M. Kawasaki, and F. Takahashi, Numerical study of Q-ball formation in gravity mediation, J. Cosmol. Astropart. Phys. 2010 (2010), no. 6, 008. https://doi.org/10.1088/1475-7516/2010/06/008
DOI
|
4 |
W. Krolikowski, D. Edmundson, and O. Bang, Unfiied model for partially coherent solitons in logarithmically nonlinear media, Phys. Rev. E 61 (2000), 3122-3126. https://doi.org/10.1103/PhysRevE.61.3122
DOI
|
5 |
A. Linde, Strings, textures, inflation and spectrum bending, Phys. Lett. B 284 (1992), no. 3-4, 215-222. https://doi.org/10.1016/0370-2693(92)90423-2
DOI
|
6 |
S. De Martino, M. Falanga, C. Godano, and G. Lauro, Logarithmic Schrodinger-like equation as a model for magma transport, Europhys. Lett. 63 (2003), no. 3, 472-475. https://doi.org/10.1209/epl/i2003-00547-6
DOI
|
7 |
S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl. 265 (2002), no. 2, 296-308. https://doi.org/10.1006/jmaa.2001.7697
DOI
|
8 |
Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123. https://doi.org/10.2307/1993333
DOI
|
9 |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), no. 3-4, 273-303. https://doi.org/10.1007/BF02761595
DOI
|
10 |
D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal. 30 (1968), 148-172. https://doi.org/10.1007/BF00250942
DOI
|
11 |
M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1
|
12 |
H. Buljan, A. Siber, M. Soljacic, T. Schwartz, M. Segev, and D. N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E (3) 68 (2003), no. 3, 036607, 6 pp. https://doi.org/10.1103/PhysRevE.68.036607
|
13 |
K. Agre and M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differential Integral Equations 19 (2006), no. 11, 1235-1270.
|
14 |
J. D. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D 52 (1995), 5576-5587.
DOI
|
15 |
K. Bartkowski and P. Gorka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A 41 (2008), no. 35, 355201, 11 pp. https://doi.org/10.1088/1751-8113/41/35/355201
|
16 |
I. Bia lynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 23 (1975), no. 4, 461-466.
|
17 |
I. Bia lynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Physics 100 (1976), no. 1-2, 62-93. https://doi.org/10.1016/0003-4916(76)90057-9
DOI
|
18 |
T. Cazenave, Stable solutions of the logarithmic Schrodinger equation, Nonlinear Anal. 7 (1983), no. 10, 1127-1140.
DOI
|
19 |
T. Cazenave and A. Haraux, Equation de Schrodinger avec non-linearite logarithmique, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), no. 4, A253-A256.
|
20 |
H. Chen, P. Luo, and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl. 422 (2015), no. 1, 84-98. https://doi.org/10.1016/j.jmaa.2014.08.030
DOI
|
21 |
S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions, Adv. Differential Equations 13 (2008), no. 11-12, 1051-1074.
|
22 |
H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudoparabolic equations with logarithmic nonlinearity, J. Dierential Equations 258 (2015), no. 12, 4424-4442. https://doi.org/10.1016/j.jde.2015.01.038
DOI
|
23 |
K. Enqvist and J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B 425 (1998), 309-321.
DOI
|
24 |
F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincare Anal. Non Lineaire 23 (2006), no. 2, 185-207. https://doi.org/10.1016/j.anihpc.2005.02.007
DOI
|
25 |
P. Gorka, Convergence of logarithmic quantum mechanics to the linear one, Lett. Math. Phys. 81 (2007), no. 3, 253-264. https://doi.org/10.1007/s11005-007-0183-x
DOI
|
26 |
S. Gerbi and B. Said-Houari, Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions, Nonlinear Anal. 74 (2011), no. 18, 7137-7150. https://doi.org/10.1016/j.na.2011.07.026
DOI
|
27 |
S. Gerbi and B. Said-Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 3, 559-566. https://doi.org/10.3934/dcdss.2012.5.559
|
28 |
P. Gorka, Logarithmic quantum mechanics: existence of the ground state, Found. Phys. Lett. 19 (2006), no. 6, 591-601. https://doi.org/10.1007/s10702-006-1012-7
DOI
|
29 |
P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B 40 (2009), no. 1, 59-66.
|