MULTIPLE SOLUTIONS FOR A CLASS OF THE SYSTEMS OF THE CRITICAL GROWTH SUSPENSION BRIDGE EQUATIONS

Tacksun Jung and Q-Heung Chor*

Abstract

We show the existence of at least two solutions for a class of systems of the critical growth nonlinear suspension bridge equations with Dirichlet boundary condition and periodic condition. We first show that the system has a positive solution under suitable conditions, and next show that the system has another solution under the same conditions by the linking arguments.

1. Introduction

In this paper we consider the multiplicity of the solutions for the following class of systems of the critical growth nonlinear suspension bridge equations with Dirichlet boundary condition and periodic condition

$$
\left\{\begin{array}{c}
u_{t t}+u_{x x x x}+a v_{+}=\frac{2 \alpha}{\alpha+\beta} u_{-}^{\alpha-1} v_{-}^{\beta}+\phi_{00}+\epsilon_{1} h_{1}(x, t) \\
\quad \text { in }(-\pi / 2, \pi / 2) \times R, \\
v_{t t}+v_{x x x x}+b u_{+}=\frac{2 \beta}{\alpha+\beta} u_{-}^{\alpha} v_{-}^{\beta-1}+\phi_{00}+\epsilon_{2} h_{2}(x, t) \\
\quad \text { in }(-\pi / 2, \pi / 2) \times R, \tag{1.1}\\
u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=v\left(\pm \frac{\pi}{2}, t\right)=v_{x x}\left(\pm \frac{\pi}{2}, t\right)=0, \\
u(x, t+\pi)=u(x, t)=u(-x, t)=u(x,-t), \\
v(x, t+\pi)=v(x, t)=v(-x, t)=v(x,-t),
\end{array}\right.
$$

Received August 8, 2008. Revised August 18, 2008.
2000 Mathematics Subject Classification: 35Q72.
Key words and phrases: System of the critical growth suspension bridge equations, linking arguments, eigenvalue of a matrix, boundary value problem.
*Corresponding author.
where $\alpha, \beta>1$ are real constants, $u_{+}=\max \{u, 0\}, u_{-}=\min \{-u, 0\}$, $\epsilon_{1}, \epsilon_{2}$ are small numbers and $h_{1}(x, t), h_{2}(x, t)$ are bounded, π-periodic in t and even in x and t and $\left\|h_{1}\right\|=\left\|h_{2}\right\|=1$. Here ϕ_{00} is the eigenfunction corresponding to the positive eigenvalue $\lambda_{00}=1$ of the eigenvalue problem $u_{t t}+u_{x x x x}=\lambda_{m n} u$ with $u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=0$, $u(x, t+\pi)=u(x, t)=u(-x, t)=u(x,-t)$.

McKenna and Walter([6]) found the physical model of jumping problem from a bridge suspended by cables under a load. The nonlinear suspension bridge equation with length π is as follows

$$
\begin{gathered}
u_{t t}+u_{x x x x}+b u^{+}=f(x, t) \quad \text { in } \quad\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=0
\end{gathered}
$$

This equation represents a bending beam supported by cables under a load f. The constant b represents the restoring force if the cables stretch. The nonlinearity u^{+}models the fact that cables resist expansion but do not resist compression. Choi and Jung ([3], [4], [5]) investigate the existence and multiplicity of solutions for the single nonlinear suspension bridge equation with Dirichlet boundary condition. The system (1.1) can be rewritten by

$$
\left\{\begin{align*}
U_{t t}+U_{x x x x} & +\nabla\left(\frac{1}{2}\left(A U^{+}, U\right)\right) \tag{1.2}\\
& =\nabla\left(\frac{2}{\alpha+\beta} u_{-}^{\alpha} v_{-}^{\beta}\right)+\binom{\phi_{00}+\epsilon_{1} h_{1}(x, t)}{\phi_{00}+\epsilon_{2} h_{2}(x, t)} \\
U\left(\pm \frac{\pi}{2}, t\right) & =U_{x x}\left(\pm \frac{\pi}{2}, t\right)=\binom{0}{0} \\
U(x, t+\pi) & =U(x, t)=U(-x)=U(x,-t)
\end{align*}\right.
$$

where $U=\binom{u}{v}, U^{+}=\binom{u^{+}}{v^{+}}, U_{t t}+U_{x x x x}=\binom{u_{t+}+u_{x x x x}}{v_{t t}+v_{x x x x}}, A=\left(\begin{array}{cc}0 & a \\ b & 0\end{array}\right) \in$ $M_{2 \times 2}(R)$.

The eigenvalue problem for $u(x, t)$,

$$
\begin{gathered}
u_{t t}+u_{x x x x}=\lambda u \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=0 \\
u(x, t+\pi)=u(x, t)=u(-x, t)=u(x,-t)
\end{gathered}
$$

has infinitely many eigenvalues

$$
\lambda_{m n}=(2 n+1)^{4}-4 m^{2} \quad(m, n=0,1,2, \ldots)
$$

and corresponding normalized eigenfunctions $\phi_{m n}(m, n \geq 0)$ given by

$$
\begin{array}{cl}
\phi_{0 n}=\frac{\sqrt{2}}{\pi} \cos (2 n+1) x & \text { for } n \geq 0 \\
\phi_{m n}=\frac{2}{\pi} \cos 2 m t \cdot \cos (2 n+1) x & \text { for } m>0, n \geq 0
\end{array}
$$

We can check easily that the eigenvalues in the interval $(-19,45)$ are given by

$$
\lambda_{20}=-15<\lambda_{10}=-3<\lambda_{00}=1<\lambda_{41}=17
$$

We assume that

$$
\begin{align*}
& \lambda_{m n}^{2}+a b \neq 0 \text { for all } m, n \text { with }(m, n) \neq(0,0), \tag{1.3}\\
& \qquad a<0, \quad b<0 \tag{1.4}\\
& \sqrt{a b}<1 \tag{1.5}
\end{align*}
$$

Our main result is the following:
Theorem 1. Assume that the conditions (1.3), (1.4) and (1.5) hold. Then, for each $h_{1}(x, t), h_{2}(x, t) \in H_{0}$ with $\left\|h_{1}(x, t)\right\|=1,\left\|h_{2}(x, t)\right\|=1$, there exist small numbers $\bar{\epsilon}_{1}>0$ and $\bar{\epsilon}_{2}>0$ such that for any $\left(\epsilon_{1}, \epsilon_{2}\right)$ with $\epsilon_{1}<\bar{\epsilon}_{1}$ and $\epsilon_{2}<\bar{\epsilon}_{2}$, system (1.1) has at least two nontrivial solutions, one of which is a positive $U_{0}=\binom{u_{0}}{v_{0}}$ with $u_{0}>0$ and $v_{0}>0$, where H_{0} is introduced in section 2 .

In section 2, we show that system (1.1) has a positive solution by direct computation and operator theory. In section 3, we approach the variational method and recall the critical point theorem which is the linking theorem for the strongly indefinite functional to find the second solution. In section 4, we prove the existence of the second solution of (1.1).

2. Existence of a positive solution

Let Q be the square $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and H_{0} the Hilbert space defined by

$$
H_{0}=\left\{u \in L^{2}(Q) \mid u \text { is even in } x \text { and } t \text { and } \int_{Q} u=0\right\} .
$$

The set of functions $\left\{\phi_{m n}\right\}$ is an orthonormal basis in H_{0}. Let us denote an element u, in H_{0}, by

$$
u=\sum h_{m n} \phi_{m n} .
$$

We define a Hilbert space H as follows

$$
H=\left\{u \in H_{0}: \sum_{m n}\left|\lambda_{m n}\right| h_{m n}^{2}<\infty\right\} .
$$

Then this space is a Banach space with norm

$$
\|u\|^{2}=\left[\sum\left|\lambda_{m n}\right| h_{m n}^{2}\right]^{\frac{1}{2}} .
$$

Let us set $E=H \times H$. We endow the Hilbert space E the norm

$$
\|(u, v)\|_{E}^{2}=\|u\|^{2}+\|v\|^{2} \quad \forall(u, v) \in E .
$$

We are looking for the weak solutions of (1.1) in E, that is, (u, v) such that $u \in H, v \in H, u_{t t}+u_{x x x x}+a v^{+}=\frac{2 \alpha}{\alpha+\beta} u_{-}^{\alpha-1} v_{-}^{\beta}+\psi_{00}+\epsilon_{1} h_{1}(x, t)$, $v_{t t}+v_{x x x x}+b u^{+}=\frac{2 \beta}{\alpha+\beta} u_{-}^{\alpha} v_{-}^{\beta-1}+\psi_{00}+\epsilon_{2} h_{2}(x, t)$.

Since $\left|\lambda_{m n}\right| \geq 1$ for all m, n, we have that
Lemma 1. (i) $\|u\| \geq\|u\|_{L^{2}(Q)}$, where $\|u\|_{L^{2}(Q)}$ denotes the L^{2} norm of u.
(ii) $\|u\|=0$ if and only if $\|u\|_{L^{2}(Q)}=0$.
(iii) $u_{t t}+u_{x x x x} \in H$ implies $u \in H$.

Lemma 2. Suppose that c is not an eigenvalue of $L, L u=u_{t t}+u_{x x x x}$, and let $f \in H_{0}$. Then we have $(L-c)^{-1} f \in H$.

Proof. When n is fixed, we define

$$
\begin{gathered}
\lambda_{n}^{+}=\inf _{m}\left\{\lambda_{m n}: \lambda_{m n}>0\right\}=8 n^{2}+8 n+1, \\
\lambda_{n}^{-}=\sup _{m}\left\{\lambda_{m n}: \lambda_{m n}<0\right\}=-8 n^{2}-8 n-3 .
\end{gathered}
$$

We see that $\lambda_{n}^{+} \rightarrow+\infty$ and $\lambda_{n}^{-} \rightarrow-\infty$ as $n \rightarrow \infty$. Hence the number of elements in the set $\left\{\lambda_{m n}:\left|\lambda_{m n}\right|<|c|\right\}$ is finite, where $\lambda_{m n}$ is an eigenvalue of L. Let

$$
f=\sum h_{m n} \phi_{m n}
$$

Then

$$
(L-c)^{-1} f=\sum \frac{1}{\lambda_{m n}-c} h_{m n} \phi_{m n} .
$$

Hence we have the inequality

$$
\left\|(L-c)^{-1} f\right\|=\sum\left|\lambda_{m n}\right| \frac{1}{\left(\lambda_{m n}-c\right)^{2}} h_{m n}^{2} \leq C \sum h_{m n}^{2}
$$

for some C, which means that

$$
\left\|(L-c)^{-1} f\right\| \leq C_{1}\|f\|_{L^{2}(Q)}, \quad C_{1}=\sqrt{C}
$$

Lemma 3. Assume that the conditions (1.3) and (1.4) hold. Then the system

$$
\begin{cases}u_{t t}+u_{x x x x} & +a v=\phi_{00} \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \tag{2.1}\\ v_{t t}+v_{x x x x} & +b u=\phi_{00} \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \\ u\left(\pm \frac{\pi}{2}, t\right) & =u_{x x}\left(\pm \frac{\pi}{2}, t\right)=v\left(\pm \frac{\pi}{2}, t\right)=v_{x x}\left(\pm \frac{\pi}{2}, t\right)=0, \\ u(x, t+\pi) & =u(x, t)=u(-x, t)=u(x,-t), \\ v(x, t+\pi) & =v(x, t)=v(-x, t)=v(x,-t),\end{cases}
$$

has a positive solution $\left(u_{*}, v_{*}\right) \in E$, which is of the form

$$
\begin{gather*}
u_{*}=\left[\frac{-a}{\lambda_{00}} \frac{-b+\lambda_{00}}{\lambda_{00}^{2}-a b}+\frac{1}{\lambda_{00}}\right] \phi_{00}, \tag{2.2}\\
v_{*}=\left[\frac{-b+\lambda_{00}}{\lambda_{00}^{2}-a b}\right] \phi_{00}
\end{gather*}
$$

Proof. We note that $\left(u_{*}, v_{*}\right)$ is a solution of the system (2.1) with $u_{*}>0$ and $v_{*}>0$.

Define $\mathcal{L} U=(L u, L v), L u=u_{t t}+u_{x x x x}$. We need to find a spectral analysis for the linear operator $\mathcal{L} U+A U$. The following lemma need a simple 'Fourier Series' argument.

Lemma 4. Let $a, b \in R$ and let $\mathcal{L}_{a b}: H \times H \rightarrow H_{0} \times H_{0}$ be defined by $\mathcal{L}_{a b}(u, v)=(L u+a v, L v+b u)$. For $\mu \in R$ we have
(a) if $\left(\lambda_{m n}-\mu\right)^{2} \neq a b$ for every m, n, then

$$
\left(\mathcal{L}_{a b}-\mu I\right)^{-1}: H_{0} \times H_{0} \rightarrow H_{0} \times H_{0}
$$

is well defined and continuous;
(b) if $\left(\lambda_{m n}-\mu\right)^{2}=a b$ for some m, n, then

$$
\operatorname{Ker}\left(\mathcal{L}_{a b}-\mu I\right)=\operatorname{span}\left\{\phi_{m n}:\left(\lambda_{m n}-\mu\right)^{2}=a b\right\}
$$

moreover if $X_{\mu}=\overline{\operatorname{span}\left\{\phi_{m n}:\left(\lambda_{m n}-\mu\right)^{2} \neq a b\right\}}$, then

$$
\left(\mathcal{L}_{a b}-\mu I\right)^{-1}: X_{\mu} \times X_{\mu} \rightarrow X_{\mu} \times X_{\mu}
$$

is well defined and continuous.
Notice that if $a b<0$, the second alternative can never occur.
Proof. To prove (a) we take (f, g) in $H_{0} \times H_{0}$. We can write $f=$ $\sum_{m n} f_{m n} \phi_{m n}$ with $\sum_{m n} f_{m n}^{2}<+\infty$ and $g=\sum_{m n} g_{m n} \phi_{m n}$ with $\sum_{m n} g_{m n}^{2}<$ $+\infty$. We define, for m, n integers,

$$
u_{m n}=\frac{\left(\lambda_{m n}-\mu\right) f_{m n}-a g_{m n}}{\left(\lambda_{m n}-\mu\right)^{2}-a b}, \quad v_{m n}=\frac{\left(\lambda_{m n}-\mu\right) g_{m n}-b f_{m n}}{\left(\lambda_{m n}-\mu\right)^{2}-a b}
$$

which make sense since $\left(\lambda_{m n}-\mu\right)^{2} \neq a b$ for every m, n. We have

$$
\left|u_{m n}\right| \leq \frac{C}{\left|\lambda_{m n}\right|}\left(\left|f_{m n}\right|+\left|g_{m n}\right|\right) \Longrightarrow \lambda_{m n}^{2} u_{m n}^{2} \leq C_{1}\left(f_{m n}^{2}+g_{m n}^{2}\right)
$$

for suitable constants C, C_{1} not depending on $m n$. The same inequality applies for $v_{m n}$. So if $u=\sum_{m n} u_{m n} \phi_{m n}, v=\sum_{m n} v_{m n} \phi_{m n}$, then $(u, v) \in$ $H \times H$. Arguing componentwise it is simple to check that $\mathcal{L}_{a b}(u, v)-$ $\mu I(u, v)=(f, g)$. So $\left(\mathcal{L}_{a b}-\mu I\right)^{-1}: H_{0} \times H_{0} \rightarrow H_{0} \times H_{0}$ is well defined. To prove (b) we first observe that if $\left(\lambda_{m n}-\mu\right)^{2}=a b$, then $\left(\mathcal{L}_{a b}-\right.$ $\mu I) \phi_{m n}=0$, as one can easily check. Secondly given (f, g) in X_{μ} we can argue as in the first case since $f_{m n}=g_{m n}=0$ for all $m n$ such that $\left(\lambda_{m n}-\mu\right)^{2}=a b$. This allows to define $u_{m n}$ and $v_{m n}$ as before for all $m n$ such that $\left(\lambda_{m n}-\mu\right)^{2} \neq a b$ and $u_{m n}=v_{m n}=0$ for all $m n$ such that $\left(\lambda_{m n}-\mu\right)^{2}=a b$.

Using Lemma 2.4 with the case $\mu=0$ we can easily derive Lemma 2.5

Lemma 5. Assume that the conditions (1.3) and (1.4) hold. Then for each $h_{1}(x, t), h_{2}(x, t) \in H_{0}$ with $\left\|h_{1}\right\|=1$ and $\left\|h_{2}\right\|=1$, there exist small numbers ϵ_{1} and ϵ_{2} such that system
the system

$$
\begin{cases}u_{t t}+u_{x x x x} & +a v=\epsilon_{1} h_{1}(x, t), \tag{2.3}\\ v_{t t}+v_{x x x x} & +b u=\epsilon_{2} h_{2}(x, t), \\ u\left(\pm \frac{\pi}{2}, t\right) & =u_{x x}\left(\pm \frac{\pi}{2}, t\right)=v\left(\pm \frac{\pi}{2}, t\right)=v_{x x}\left(\pm \frac{\pi}{2}, t\right)=0, \\ u(x, t+\pi) & =u(x, t)=u(-x, t)=u(x,-t), \\ v(x, t+\pi) & =v(x, t)=v(-x, t)=v(x,-t),\end{cases}
$$

has a unique solution $\left(u_{\epsilon_{1} \epsilon_{2}}, v_{\epsilon_{1} \epsilon_{2}}\right) \in E=H \times H$.

Proof of the existence of a positive solution

By Lemma 2.3 and Lemma 2.5, $\left(u_{*}+u_{\epsilon_{1} \epsilon_{2}}, v_{*}+v_{\epsilon_{1} \epsilon_{2}}\right)$ is a solution of the system

$$
\begin{cases}u_{t t}+u_{x x x x} & +a v=\phi_{00}+\epsilon_{1} h_{1}(x, t), \tag{2.4}\\ v_{t t}+v_{x x x x} & +b v=\phi_{00}+\epsilon_{2} h_{2}(x, t), \\ u\left(\pm \frac{\pi}{2}, t\right) & =u_{x x}\left(\pm \frac{\pi}{2}, t\right)=v\left(\pm \frac{\pi}{2}, t\right)=v_{x x}\left(\pm \frac{\pi}{2}, t\right)=0 \\ u(x, t+\pi) & =u(x, t)=u(-x, t)=u(x,-t), \\ v(x, t+\pi) & =v(x, t)=v(-x, t)=v(x,-t),\end{cases}
$$

where $u_{*}=\left[\frac{-a}{\lambda_{00}} \frac{-b+\lambda_{00}}{\lambda_{00}^{2}-a b}+\frac{1}{\lambda_{00}}\right] \phi_{00}>0, v_{*}=\left[\frac{-b+\lambda_{00}}{\lambda_{00}^{2}-a b}\right] \phi_{00}>0$. By Lemma 2.4, $u_{\epsilon_{1} \epsilon_{2}} \in H$ and $v_{\epsilon_{1} \epsilon_{2}} \in H$. Since the elements of H lies in C^{1}, the elements $u_{\epsilon_{1} \epsilon_{2}}, v_{\epsilon_{1} \epsilon_{2}} \in C^{1}$. Thus we can find small numbers $\bar{\epsilon}_{1}$ and $\bar{\epsilon}_{2}$ such that for any $\left(\epsilon_{1}, \epsilon_{2}\right)$ with $\epsilon_{1}<\bar{\epsilon}_{1}$ and $\epsilon_{2}<\bar{\epsilon}_{2}, u_{*}+u_{\epsilon_{1} \epsilon_{2}}>0$ and $v_{*}+v_{\epsilon_{1} \epsilon_{2}}>0$, which is also a positive solution of system (1.1).

3. Variational approach

Now we are looking for the other weak solutions of system (1.1). To find the other nontrivial weak solutions of system (1.1) we approach the variational method and recall the linking theorem for the strongly indefinite functional. We observe that the weak solutions of (1.1) coincide with the critical points of the corresponding functional

$$
\begin{gather*}
I: E \rightarrow R \in C^{1,1} \\
I(U)=\frac{1}{2} \int_{Q} \mathcal{L} U \cdot U d x d t+\frac{1}{2} \int_{Q}\left(A U^{+}, U\right)_{R^{2}} d x d t-\frac{2}{\alpha+\beta} \int_{Q} u_{-}^{\alpha} v_{-}^{\beta} d x d t \\
-\int_{Q}\left(\phi_{00}+\epsilon_{1} h_{1}(x, t)\right) u d x d t-\int_{Q}\left(\phi_{00}+\epsilon_{2} h_{2}(x, t)\right) v d x d t \tag{3.1}
\end{gather*}
$$

We notice that the solution (u, v) of system (1.1) is of the form $(u, v)=$ $(\bar{u}, \bar{v})+\left(u_{0}, v_{0}\right)$, where $\left(u_{0}, v_{0}\right)$ is a positive solution with $u_{0}=u_{*}+u_{\epsilon_{1} \epsilon_{2}}>$

0 and $v_{0}=v_{*}+v_{\epsilon_{1} \epsilon_{2}}>0$, and (\bar{u}, \bar{v}) is a nontrivial solution of the system

$$
\left\{\begin{align*}
u_{t t}+u_{x x x x}+a\left(v+v_{0}\right)_{+}-a v_{0}= & \frac{2 \alpha}{\alpha+\beta}\left(u+u_{0}\right)_{-}^{\alpha-1}\left(v+v_{0}\right)_{-}^{\beta} \tag{3.2}\\
& \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{\beta} \\
v_{t t}+v_{x x x x}+b\left(u+u_{0}\right)_{+}-b u_{0} & =\frac{2 \beta}{\alpha+\beta}\left(u+u_{0}\right)_{-}^{\alpha}\left(v+v_{0}\right)_{-}^{\beta-1} \\
& \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \\
& =v\left(\pm \frac{\pi}{2}, t\right)=0, \\
u\left(\pm \frac{\pi}{2}, t\right) & =u(x, t)=u(-x, t)=u(x,-t), \\
u(x, t+\pi) & =v(x, t)=v(-x, t)=v(x,-t),
\end{align*}\right.
$$

Thus it suffices to find the nontrivial solution of system (3.2). We observe that the weak solutions of (3.2) are the critical points of the functional

$$
\begin{gather*}
J: E \rightarrow R \in C^{1,1}, \\
J(U)=\frac{1}{2} \int_{Q} \mathcal{L} U \cdot U d x d t+\frac{1}{2} \int_{Q}\left(A\left(U+U_{0}\right)_{+}, U\right)_{R^{2}} d x d t \\
-\int_{Q}\left(A U_{0}, U\right)_{R^{2}} d x d t-\frac{2}{\alpha+\beta} \int_{Q}\left(u+u_{0}\right)_{-}^{\alpha}\left(v+v_{0}\right)_{-}^{\beta} d x d t, \tag{3.3}
\end{gather*}
$$

where $\left(U+U_{0}\right)_{+}=\binom{\left(u+u_{0}\right)_{+}}{\left(v+v_{0}\right)_{+}}$. Thus we shall find the critical points for J. Now we recall the linking theorem for strongly indefinite functional (cf. [8]).

Lemma 6. (Linking Theorem)
Let E be a real Hilbert space with $E=E_{1} \oplus E_{2}$ and $E_{2}=E_{1}^{\perp}$. We suppose that
(J1) $J \in C^{1}(E, R)$, satisfies (P.S.)* condition, and
(J2) $J(u)=\frac{1}{2}(L u, u)+b u$, where $L u=L_{1} P_{1} u+L_{2} P_{2} u$ and $L_{i}: E_{i} \rightarrow E_{i}$ is bounded and selfadjoint, $i=1,2$,
(J3) b^{\prime} is compact, and
(J4) there exists a subspace $\tilde{E} \subset E$ and sets $S \subset E, T \subset \tilde{E}$ and constants $\gamma>w$ such that,
(i) $S \subset E_{1}$ and $\left.J\right|_{S} \geq \gamma$,
(ii) T is bounded and $\left.J\right|_{\partial T} \leq w$,
(iii) S and ∂T link.

Then J possesses a critical value $c \geq \gamma$.
Let E^{-}, E^{0}, E^{+}be the subspaces of E on which the functional $U \mapsto$ $\frac{1}{2} \int_{Q} \mathcal{L} U \cdot U$ is negative definite, null, positive definite and E^{-}, E^{0} and E^{+}are mutually orthogonal. Let P^{+}be the projection for E onto E^{+},
P^{0} the one from E onto E^{0} and P^{-}the one from E onto E^{-}. Let $\left(E_{n}\right)_{n}$ be a sequence of closed subspaces of E with the conditions:

$$
\begin{equation*}
E_{n}=E_{n}^{-} \oplus E^{0} \oplus E_{n}^{+}, \text {where } E_{n}^{+} \subset E^{+}, E_{n}^{-} \subset E^{-} \text {for all } n, \tag{3.4}
\end{equation*}
$$

$\left(E_{n}^{+}\right.$and E_{n}^{-}are subspaces of $\left.E\right), \operatorname{dim} E_{n}<+\infty, E_{n} \subset E_{n+1}, \cup_{n \in N} E_{n}$ is dense in E. Let $P_{E_{n}}$ be the orthogonal projections from E onto E_{n}.

Let us define

$$
\begin{equation*}
C_{\alpha, \beta}(Q)=\inf _{(u, v) \in E \backslash(0,0)} \frac{\int_{Q} \mathcal{L} U \cdot U d x d t}{\left(\int_{Q}|u|^{\alpha}|v|^{\beta} d x d t\right)^{\frac{2}{\alpha+\beta}}}, \quad \text { for } U=(u, v) \text {. } \tag{3.5}
\end{equation*}
$$

Let us prove that the functional J satisfies the linking geometry.
Lemma 7. Assume that the conditions (1.3), (1.4) and (1.5) hold. Then
(i) there exist a number $\rho>0$ and a small ball $B_{\rho} \subset E^{+}$with radius ρ such that if $U \in \partial B_{\rho}$, then

$$
\inf _{U \in \partial B_{\rho}} J(U)>0
$$

(ii) there is an $e \in E^{+}, R>\rho$ and a large ball $D_{R} \subset E^{0} \oplus E^{-}$with radius $R>0$ such that if

$$
W=\left(\overline{D_{R}} \cap\left(E^{0} \oplus E^{-}\right)\right) \oplus\left\{r e \mid, e \in E^{+}, 0<r<R\right\}
$$

then

$$
\sup _{U \in \partial W} J(U) \leq 0 .
$$

Proof. (i) By (3.5), for $U \in E^{+}$

$$
\begin{gathered}
J(U)=\frac{1}{2} \int_{Q} \mathcal{L} U \cdot U+\frac{1}{2} \int_{Q}\left(A\left(U+U_{0}\right)_{+}, U\right)_{R^{2}}-\int_{Q}\left(A U_{0}, U\right)_{R^{2}} \\
-\frac{2}{\alpha+\beta} \int_{Q}\left(u+u_{0}\right)_{-}^{\alpha}\left(v+v_{0}\right)_{-}^{\beta} d x d t \\
=\frac{1}{2} \int_{Q} \mathcal{L} U \cdot U+\frac{1}{2} \int_{Q}(A U, U)_{R^{2}}+\frac{1}{2} \int_{Q}\left(A\left(U+U_{0}\right)_{-}, U\right)_{R^{2}} \\
-\frac{2}{\alpha+\beta} \int_{Q}\left(u+u_{0}\right)_{-}^{\alpha}\left(v+v_{0}\right)_{-}^{\beta} d x d t
\end{gathered}
$$

Since $a<0, b<0$ and $\left(A\left(U+U_{0}\right)_{-}, U\right)_{R^{2}} \geq\left(A U_{-}, U_{-}\right)_{R^{2}}$, we have

$$
\begin{gathered}
J(U) \geq \frac{1}{2} \int_{Q} \mathcal{L} U \cdot U+\frac{1}{2} \int_{Q}(A U, U)_{R^{2}}-\frac{1}{2} \int_{Q}\left(A U_{-}, U_{-}\right)_{R^{2}} \\
-\frac{2}{\alpha+\beta}\left(C_{(\alpha, \beta)}(Q)\right)^{-\frac{\alpha+\beta}{2}}\|U\|_{E}^{\alpha+\beta} \\
=\frac{1}{2} \int_{Q} \mathcal{L} U \cdot U+\frac{1}{2} \int_{Q}\left(A U_{+}, U_{+}\right)_{R^{2}}-\frac{2}{\alpha+\beta}\left(C_{(\alpha, \beta)}(Q)\right)^{-\frac{\alpha+\beta}{2}}\|U\|_{E}^{\alpha+\beta} \\
\geq \frac{1}{2} \frac{1}{\lambda_{00}}\|U\|_{E}^{2}-\sqrt{a b}\left\|U_{+}\right\|_{L^{2}(Q}^{2}-\frac{2}{\alpha+\beta}\left(C_{(\alpha, \beta)}(Q)\right)^{-\frac{\alpha+\beta}{2}}\|U\|_{E}^{\alpha+\beta} \\
\geq \frac{1}{2} \frac{1-\sqrt{a b}}{\lambda_{00}}\|U\|_{E}^{2}-\frac{2}{\alpha+\beta}\left(C_{(\alpha, \beta)}(Q)\right)^{-\frac{\alpha+\beta}{2}}\|U\|_{E}^{\alpha+\beta}
\end{gathered}
$$

Since $\sqrt{a b}<1=\lambda_{00}$ and $\alpha+\beta>2$, there exist a small number $\rho>0$ and a small ball $B_{\rho} \subset E^{+}$with radius ρ such that if $U \in \partial B_{\rho} \subset E^{+}$, then $\inf J(U)>0$.
(ii) Let us choose an element $e \in E^{+}$. Let us fix $\tilde{U}=(\tilde{u}, \tilde{v})=P^{-} \tilde{U}+r e(\neq$ $(0,0)) \in E^{0} \oplus E^{-} \oplus\{r e \mid 0<r\}$ such that

$$
\begin{equation*}
\int_{Q}(\tilde{u}+1)_{-}^{\alpha}(\tilde{v}+1)_{-}^{\beta}>0 \tag{3.6}
\end{equation*}
$$

For $s>0$ we have

$$
\begin{gathered}
J(s \tilde{U})=\frac{s^{2}}{2} \int_{Q} \mathcal{L} \tilde{U} \cdot \tilde{U} d x d t+\frac{s^{2}}{2} \int_{Q}\left(A\left(\tilde{U}+\frac{U_{0}}{s}\right)_{+}, \tilde{U}\right)_{R^{2}} \\
-s \int_{Q}\left(A U_{0}, \tilde{U}\right)_{R^{2}} d x d t-\frac{2}{\alpha+\beta} s^{\alpha+\beta} \int_{Q}\left(\tilde{u}+\frac{u_{0}}{s}\right)_{-}^{\alpha}\left(\tilde{v}+\frac{v_{0}}{s}\right)_{-}^{\beta} d x d t
\end{gathered}
$$

Since $a<0, b<0$ and $\left(A\left(\tilde{U}+\frac{U_{0}}{s}\right)_{+}, \tilde{U}\right)_{R^{2}} \leq\left(A \tilde{U}_{+}, \tilde{U}_{+}\right)_{R^{2}}$, we have that

$$
\begin{aligned}
J(s \tilde{U}) \leq & \frac{s^{2}}{2}(-3)\left\|P^{-} \tilde{U}\right\|_{L^{2}(Q)}^{2}+\frac{s^{2}}{2} \int_{Q}\left(A\left(P^{-} \tilde{U}+, P^{-} \tilde{U}_{+}\right)_{R^{2}}+\frac{s^{2}}{2} \lambda_{m n}\|r e\|_{L^{2}(Q)}^{2}\right. \\
& +\frac{s^{2}}{2} \int_{Q}\left(A(r e)_{+},(r e)_{+}\right)_{R^{2}}-s \int_{Q}\left(A U_{0}, \tilde{U}\right)_{R^{2}} d x d t \\
& \quad-\frac{2}{\alpha+\beta} s^{\alpha+\beta} \int_{Q}\left(\tilde{u}+\frac{u_{0}}{s}\right)_{-}^{\alpha}\left(\tilde{v}+\frac{v_{0}}{s}\right)_{-}^{\beta} d x d t \\
\leq & \frac{s^{2}}{2}(-3+\sqrt{a b})\left\|P^{-} \tilde{U}\right\|_{L^{2}(Q)}^{2}+\frac{s^{2}}{2}\left(\lambda_{m n}+\sqrt{a b}\right)\|r e\|_{L^{2}(Q)}^{2}
\end{aligned}
$$

$$
-s \int_{Q}\left(A U_{0}, \tilde{U}\right)_{R^{2}} d x d t-\frac{2}{\alpha+\beta} s^{\alpha+\beta} \int_{Q}\left(\tilde{u}+\frac{u_{0}}{s}\right)_{-}^{\alpha}\left(\tilde{v}+\frac{v_{0}}{s}\right)_{-}^{\beta} d x d t
$$

for some $\lambda_{m n}>0$ Choosing $s_{1}>0$ such that $\frac{u_{0}(x, t)}{s_{1}}, \frac{v_{0}(x, t)}{s_{1}} \geq 1, \forall(x, t) \in$ Q, we get, by (3.6) that the last integral in the inequality above is positive for $s \leq s_{1}$ since $\alpha+\beta>2$. Since $\alpha+\beta>2, J(s \tilde{U}) \rightarrow-\infty$ as $s \rightarrow \infty$. Therefore we can choose a large number $R>0$ and a large ball $\left(D_{R} \subset E^{0} \oplus E^{-}\right) \oplus\{r e \mid 0<r<R\}$ with radius $R>0$ such that if $U \in \partial\left(\overline{D_{R}} \cap E^{0} \oplus E^{-}\right) \oplus\{r e \mid 0<r<R\}$, then $\sup J(U) \leq 0$. So the assertion (ii) hold. Thus the lemma is proved.

We shall prove that the functional J satisfies the $(P . S .)_{c}^{*}$ condition with respect to $\left(E_{n}\right)_{n}$ for any $c \in R$.

Lemma 8. Assume that the conditions (1.3), (1.4) and (1.5) hold. Then the functional J satisfies the $(P . S .)_{c}^{*}$ condition with respect to $\left(E_{n}\right)_{n}$ for any real number c.

Proof. Let $c \in R$ and $\left(h_{n}\right)$ be a sequence in N such that $h_{n} \rightarrow+\infty$, $\left(U_{n}\right)_{n}$ be a sequence such that

$$
U_{n}=\left(u_{n}, v_{n}\right) \in E_{h_{n}}, \forall n, J\left(U_{n}\right) \rightarrow c, P_{E_{h_{n}}} \nabla J\left(U_{n}\right) \rightarrow 0 .
$$

We claim that $\left(U_{n}\right)_{n}$ is bounded. By contradiction we suppose that $\left\|U_{n}\right\|_{E} \rightarrow+\infty$ and set $\hat{U}_{n}=\frac{U_{n}}{\left\|U_{n}\right\|_{E}}$. Then

$$
\begin{gathered}
\left\langle P_{E_{h_{n}}} \nabla J\left(U_{n}\right), \hat{U}_{n}\right\rangle=2 \frac{J\left(U_{n}\right)}{\left\|U_{n}\right\|_{E}}- \\
\frac{\int_{Q}\left(\frac{2 \alpha}{\alpha+\beta}\left(u_{n}+u_{0}\right)_{-}^{\alpha-1}\left(v_{n}+v_{0}\right)_{-}^{\beta} u_{n}+\frac{2 \beta}{\alpha+\beta}\left(u_{n}+u_{0}\right)_{-}^{\alpha}\left(v_{n}+v_{0}\right)_{-}^{\beta-1} v_{n}\right.}{\left\|U_{n}\right\|_{E}} \\
\frac{\left.-\frac{4}{\alpha+\beta}\left(u_{n}+u_{0}\right)_{-}^{\alpha}\left(v_{n}+v_{0}\right)_{-}^{\beta}\right) d x d t}{\left\|U_{n}\right\|_{E}} \longrightarrow 0 .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\frac{\int_{Q}\left(\frac{2 \alpha}{\alpha+\beta}\left(u_{n}+u_{0}\right)_{-}^{\alpha-1}\left(v_{n}+v_{0}\right)_{-}^{\beta} u_{n}+\frac{2 \beta}{\alpha+\beta}\left(u_{n}+u_{0}\right)_{-}^{\alpha}\left(v_{n}+v_{0}\right)_{-}^{\beta-1} v_{n}\right) d x d t}{\left\|U_{n}\right\|_{E}} \\
-\frac{\frac{4}{\alpha+\beta} \int_{Q}\left(u_{n}+u_{0}\right)_{-}^{\alpha}\left(v_{n}+v_{0}\right)_{-}^{\beta} d x d t}{\left\|U_{n}\right\|_{E}} \longrightarrow 0 .
\end{gathered}
$$

Since $\left\|U_{n}\right\|_{E} \rightarrow \infty$ and $\frac{\frac{4}{\alpha+\beta} \int_{Q}\left(u_{n}+u_{0}\right)^{\alpha}\left(v_{n}+v_{0}\right)_{-}^{\beta} d x d t}{\left\|U_{n}\right\|_{E}}$ is bounded in Q,

$$
\frac{\operatorname{grad}\left(\int_{Q} \frac{2}{\alpha+\beta}\left(u_{n}+u_{0}\right)_{-}^{\alpha}\left(v_{n}+v_{0}\right)_{-}^{\beta} d x d t\right) \cdot U_{n}}{\left\|U_{n}\right\|_{E}} \text { converges to } 0
$$

and $\hat{U}_{n} \rightharpoonup 0$. We get

$$
\begin{gathered}
\frac{P_{E_{h_{n}}} \nabla J\left(U_{n}\right)}{\left\|U_{n}\right\|_{E}}=P_{E_{h_{n}}} \int_{Q}\left[\mathcal{L} \hat{U}_{n}+A\left(\hat{U} n+\frac{U_{0}}{\left\|U_{n}\right\|_{E}}\right)_{+}-A \frac{U_{0}}{\left\|U_{n}\right\|_{E}}\right] \\
-\frac{P_{E_{h_{n}}} \operatorname{grad}\left(\int_{Q} \frac{2}{\alpha+\beta}\left(u_{n}+u_{0}\right)_{-}^{\alpha}\left(v_{n}+v_{0}\right)_{-}^{\beta} d x d t\right)}{\left\|U_{n}\right\|_{E}} \longrightarrow 0,
\end{gathered}
$$

so $P_{E_{h_{n}}} \mathcal{L} \hat{U}_{n}+A\left(\hat{U} n+\frac{U_{0}}{\left\|U_{n}\right\|_{E}}\right)_{+}-A \frac{U_{0}}{\left\|U_{n}\right\|_{E}}$ converges. Since $\left(\hat{U}_{n}\right)_{n}$ and $\frac{U_{0}}{\left\|U_{n}\right\|_{E}}$ are bounded and \mathcal{L} and A are compact mappings, up to subsequence, $\left(\hat{U}_{n}\right)_{n}$ has a limit. Since $\hat{U}_{n} \rightharpoonup(0,0)$, we get $\hat{U}_{n} \rightarrow(0,0)$, which is a contradiction to the fact that $\left\|\hat{U}_{n}\right\|_{E}=1$. Thus $\left(U_{n}\right)_{n}$ is bounded. We can now suppose that $U_{n} \rightharpoonup U$ for some $U \in E$. Since the mapping $U \mapsto \operatorname{grad}\left(\int_{Q} \frac{2}{\alpha+\beta}\left(u_{n}+u_{0}\right)_{-}^{\alpha}\left(v_{n}+v_{0}\right)_{-}^{\beta} d x d t\right)$ is a compact mapping, $\operatorname{grad}\left(\int_{Q} \frac{2}{\alpha+\beta}\left(u_{n}+u_{0}\right)_{-}^{\alpha}\left(v_{n}+v_{0}\right)_{-}^{\beta} d x d t\right) \longrightarrow \operatorname{grad}\left(\int_{Q} \frac{2}{\alpha+\beta}\left(u+u_{0}\right)_{-}^{\alpha}(v+\right.$ $\left.\left.v_{0}\right)_{-}^{\beta} d x d t\right)$. Thus $\left(P_{E_{h_{n}}}\left(\mathcal{L} U_{n}+A\left(U_{n}+U_{0}\right)_{+}\right)_{n}\right.$ converges. Since \mathcal{L} and A are compact operators and $\left(U_{n}\right)_{n}$ is bounded, we deduce that, up to a subsequence, $\left(U_{n}\right)_{n}$ converges to some U strongly with $\nabla J(U)=$ $\lim \nabla J\left(U_{n}\right)=0$. Thus we prove the lemma.

4. Existence of the second solution

We note that $J(0,0)=0$ and $(u, v) \mapsto \operatorname{grad}\left(\frac{2}{\alpha+\beta} \int_{Q}\left(u+u_{0}\right)_{-}^{\alpha}(v+\right.$ $\left.\left.v_{0}\right)_{-}^{\beta} d x d t\right)$ is a compact mapping. By Lemma 3.2, there exist a small number $\rho>0$ and a small ball $B_{\rho} \subset E^{0} \oplus E^{+}$with radius ρ such that if $U \in \partial B_{\rho}$, then $\gamma=\inf J(U)>0$, and there is an $e \in E^{+}$, $R>\rho>0$ and a large ball D_{R} with radius $R>0$ such that if $W=$ $\left(\overline{D_{R}} \cap\left(E^{0} \oplus E^{-}\right)\right) \oplus\{r e \mid 0<r<R\}$, then $\sup _{U \in \partial W} J(U) \leq 0$. Let us set $\tau=\sup _{W} J$. We note that $\tau<+\infty$. Let $\left(E_{n}\right)_{n}$ be a sequence of subspaces of E satisfying (3.4). Clearly $E^{0} \subset E_{n}$ for all n, and ∂B_{ρ} and ∂W link. We have, for all $n \in N$,

$$
\gamma \leq \sup _{\partial W \cap E_{n}} J<\inf _{\partial B_{\rho} \cap E_{n}} J .
$$

Moreover, by Lemma 3.3, $J_{n}=\left.J\right|_{E_{n}}$ satisfies the (P.S. $)_{c}^{*}$ condition for any $c \in R$. Thus by Lemma 3.1 (Linking Theorem), there exists a critical point $\left(u_{n}, v_{n}\right)$ for J_{n} with

$$
\gamma \leq \inf _{\partial B_{\rho} \cap E_{n}} J \leq J\left(u_{n}, v_{n}\right) \leq \sup _{W \cap E_{n}} J \leq \tau
$$

Since J_{n} satisfies the $(P . S .)_{c}^{*}$ condition, we obtain that, up to a subsequence, $\left(u_{n}, v_{n}\right) \rightarrow(\bar{u}, \bar{v})$, with (\bar{u}, \bar{v}) a critical point for J such that $\gamma \leq J(\bar{u}, \bar{v}) \leq \tau$. Hence $(\bar{u}, \bar{v}) \neq(0,0)$. Thus the functional I has two nontrivial solutions, one of which is a positive solution $\left(u_{0}, v_{0}\right)$ and the second solution of which is $\left(\bar{u}+u_{0}, \bar{v}+v_{0}\right)$. Thus system (1.1) has at least two nontrivial solutions. Thus Theorem 1.1 is proved.

References

[1] K. C. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math. 34, 693-712 (1981).
[2] K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhäuser, (1993).
[3] Q. H. Choi and T. JungT. Jung, A nonlinear suspension bridge equation with nonconstant load, Nonlinear Analysis TMA. 35, 649-668 (1999).
[4] Q. H. Choi and T. JungT. Jung, Multiplicity results for the nonlinear suspension bridge equation, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, Vol.9, 29-38 (2002).
[5] Q. H. Choi, T. JungT. Jung and P. J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction method, Applicable Analysis, 50, 73-92 (1993).
[6] P. J. McKenna and W. WalterW. Walter, Nonlinear oscillations in a suspension bridge, Archive for Rational Mechanics and Analysis Vol. 98, No. 2, 167-177 (1987).
[7] J. T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, (1969).
[8] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S. Reg. Conf. Ser. in Math. 6, American Mathematical Society, Providence, R1,(1986).

Department of Mathematics
Kunsan National University
Kunsan 573-701 Korea
E-mail: tsjung@kunsan.ac.kr
Department of Mathematics Education
Inha University
Incheon 402-751 Korea
E-mail: qheung@inha.ac.kr

