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NONLINEAR BIHARMONIC EQUATION WITH
POLYNOMIAL GROWTH NONLINEAR TERM

TACKSUN JUNG* AND Q-HEUNG CHOI

ABSTRACT. We investigate the existence of solutions of the nonlin-
ear biharmonic equation with variable coeflicient polynomial growth
nonlinear term and Dirichlet boundary condition. We get a theo-
rem which shows that there exists a bounded solution and a large
norm solution depending on the variable coefficient. We obtain this
result by variational method, generalized mountain pass geometry
and critical point theory.

1. Introduction

Let 2 be a bounded domain in R™ with smooth boundary 0€2. Let A
be the elliptic operator and A? be the biharmonic operator. Choi and
Jung [3] showed that the problem

A%y 4 cAu = but + s in €, (1.1)
u =0, Au=0 on 0f2

has at least two nontrivial solutions when (¢ < A, A\j(A; —¢) < b <
Aa(A2 —¢) and s < 0) or (A} < ¢ < Ay, b < A(A —¢) and s > 0).
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We obtained these results by using variational reduction method. Jung
and Choi [5] also proved that when ¢ < A\j, Aj(A1 — ¢) < b < Ay(Ay —¢)
and s < 0, (1.1) has at least three nontrivial solutions by using degree
theory. Tarantello [10] also studied

A*u+cAu=0b((u+1)" - 1), (1.2)

u =0, Au=0 on 0f).

She showed that if ¢ < A; and b > A;(A\; — ¢), then (1.4) has a negative
solution. She obtained this result by degree theory. Micheletti and
Pistoia [8] also proved that if ¢ < A\; and b > A\y(A2 — ¢) then (1.2) has at
least four solutions by variational linking theorem and Leray-Schauder
degree theory.

In this paper we consider the following nonlinear biharmonic equation
with Dirichlet boundary condition

A*u+ cAu = a(z)g(u) in €, (1.3)
u =0, Au=0 on 02,

where we assume that ¢ € R is not an eigenvalue of —A and that a :
Q — R is a continuous function which changes sign in €.
We assume that g satisfies the following conditions:
(91) g € C(R, R),
(¢92) there are constants ay, as > 0 such that

l9(w)] < a1+ asful"™,

Where2<,u<%ifn23.

(¢93) there exists a constant ry > 0 such that

3
0 < uG(E) = p / g(t)dt < £g(6)  for €] > o

(94) g(u) = o(Jul) as u — 0.
We note that (¢g3) implies the existence of the positive constants as, ay,
as such that

1
;(Sg(f) +az) > G(§) +as > aslé]"  for €€ R. (1.4)

Khanfir and Lassoued [6] showed the existence of at least one solution
for the nonlinear elliptic boundary problem when ¢ is locally Holder
continuous on R.
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We are trying to find the weak solutions of (1.3), that is,
/((A2u + cAu — a(x)g(u))vdr =0 for v € H,
Q

where the space H is introduced in section 2. Let us set
Q" = {x € Qla(x) > 0}, Q" ={z e Q] a(zx) <0}
and let
at=a- XQ+,4 = —a-Xo--
Since a(z) changes sign, the open subsets Q7 and Q= are nonempty.
Now we can write a = a™ — a~. Our main results are as follows:

THEOREM A .  Assume that A\ < ¢ < A\gy1, g satisfies (g1)-(g4)
and g(u)u — pG(u) is bounded. Then (1.3) has at least one bounded
solution.

THEOREM B.  Assume that Ay < ¢ < A\pi1, g satisfies (g1)-(g4),
g(u)u — uG(u) is not bounded and there exists a small € > 0 such that
Jo a”(x) < e. Then (1.3) has at least two solutions, (i) one of which is
bounded and (ii) the other solution of which is large norm such that

max,eql|u(z)| > M for some M > 0.

In Section 2, we prove that I(u) is continuous and Fréchet differen-
tiable and satisfies the (P.S.) condition. In Section 3, we prove Theorem
A . In Section 4, we prove Theorem B by variational method, general-
ized mountain pass geometry and critical point theory.

2. Eigenspaces and Palais-Smale condition

The eigenvalue problem with Dirichlet boundary condition
Au+ A u=0 in Q,

u=0 on 0f2

has infinitely many eigenvalues \x, £ > 1 and corresponding eigenfunc-
tions ¢, k > 1, the suitably normalized with respect to L?(Q2) inner
product, where each eigenvalue )\, is repeated as often as its multiplic-
ity. The eigenvalue problem

A%y + cAu = Au in €,
u =0, Au =0 on 0f)
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has also infinitely many eigenvalues A\;(A\x —¢), £ > 1 and corresponding
eigenfunctions ¢y, k£ > 1. We note that A\j(A\; —¢) < Ay(Aa—¢) < ... —
+00, and that ¢;(z) > 0 for z € Q.

Let L?*(Q2) be a square integrable function space defined on €. Any
element u in L?(Q) can be written as

w=> hpr with Y h} < oo.

We define a subspace H of L*(Q) as follows

H={ue L] > M —0c)| < oo}

Then this is a complete normed space with a norm

lull = >~ [\l — o)|h3]=.

Since A\, — +o00 and c is fixed, we have
(i) A%u + cAu € H implies u € H.

(i) [lul| > C||lu||r2(q), for some C' > 0.
(iii) ||u||2() = 0 if and only if ||jul| = 0,
which is proved in [2].

Let

H+:{UEH| h, = 0 if )\k(/\k—c)<0},

H_:{U€H| hy =0 if )\k()\k—c)>0}.

Then H=H_ @ H,, forue Hyu=u +u" € H @ H,. Let P, be
the orthogonal projection on H, and P_ be the orthogonal projection
on H_. We can wtite Py,u =u", P.u=u", foru € H.

We are looking for the weak solutions of (1.1). The weak solutions of
(1.1) coincide with the critical points of the associated functional

I(u) € C*(H,R),

Iw) = /Q[%|Au|2—§|Vu|2]dx—/ga(x)G(u)dx (2.1)

= S0Pl = 1P-alf) [ a)Gu)ds,

By (g1) and (g2), I is well defined. By the following Proposition 2.1,
I € C'Y(H,R) and I is Fréchet differentiable in H:
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PROPOSITION 2.1. Assume that A\, < ¢ < A1, kK> 1, and g
satisfies (g1) — (g4). Then I(u) is continuous and Fréchet differentiable
in H with Fréchet derivative

VI(u)h = /Q[Au - Ah — cVu-Vh —a(x)g(u)h]dz. (2.2)

If we set

then K'(u) is continuous with respect to weak convergence, K'(u) is
compact, and

K'(u)h = / a(x)g(u)hdx  for all h € H.
0

This implies that I € C'(H, R) and K (u) is weakly continuous.

The proof of Proposition 2.1 has the same process as that of the proof
in Appendix B in [9].

PROPOSITION 2.2.  (Palais-Smale condition)
Assume that \y < ¢ < Agy1, k > 1, g satisfies (g1) — (g4) and f €
L?*(Q). We also assume that g(u)u — uG(u) is bounded or there exists
ane > 0 such that [, o™ (x)dr < e. Then I(u) satisfies the Palais-Smale
condition.

Proof. We assume that g(u)u — uG(u) is bounded or there exists an
¢ > 0 such that [, a™(z)dz < e. Suppose that (u,,) is a sequence with
I(um) < M and I'(u,) — 0 as m — oo. Then by (¢2), (¢93), and Hdolder
inequality and Sobolev Embedding Theorem, for large m and p > 2 with
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U = Uy, we have

Mot glul = 1) = 51w = [ Gat(u - a@)Gllds

= | @ @gstu—G@ldz = [ o @50 - Gl

Q

(% - i) " /Qcﬁ(x)  Gu)da

1 .
— max |§g(u)u — G(u)| . a (x)dx.

Thus if 3g(u)u — G(u) is bounded or there exists an ¢ > 0 such that
Jo- a”(x) < e, then we have

K
1+ |lul 2M1/ ult > M, (/ \u|2d$> . (2.3)
Q Q

Moreover since

N|=

I (um)e| < [l (2.4)
for large m and all ¢ € H, choosing ¢ = u, € H, gives

/Q (A2uy, + cAuy) -
- [ ot
< / (@) gttt

< ol [ (@unl” + afun)
Q

sl

< 01/|um|“+02|!um||L2(Q)
Q

e / et + C -
Q
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Taking ¢ = —u,, in (2.4) yields

u, | = /Q(AQuercAum).(_u;)
- / (@) g (t) - (i)

< [ la()llg(um)||um]
Q

< fal [ (@nlunl” + ashin)
Q
< C’3/|Um|“+c4||um||L2(Q)
Q

< G [ Junl+ Clllunl|
Q
Thus, by (2.3), we have

[l * = Nl [* + [l I* < M [ fu ] + Majt |
Q

< Ms (1 [lumll) + Mafluml| < M (1 + [luml]) ,

from which the boundedness of (u,,) follows. Thus (u,,) converges
weakly in H. Since PLI'(uy,) = j:Pium—i—Pi?B(um) with P compact and
the weak convergence of Piu,, imply the strong convergence of Piu,,
and hence (PS) condition holds. O

3. At least one bounded solution

We shall show that I(u) satisfies generalized mountain pass geomet-
rical assumptions.
We recall generalized mountain pass geometry:
Let H =V @& X, where H is a real Banach space and V' # {0} and is
finite dimensional. Suppose that I € C*(H, R), satisfies (P.S.) condiion,
and
(i) there are constants p, & > 0 and a bounded neighborhood B, of 0
such that I|pp,nx > o,
(ii) thereis an e € 9B;NX and R > psuch that if Q = (BrpNV)@{re| 0 <
r < R}, then I]yg < 0.
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Then I possesses a critical value b > «. Moreover b can be characterized
as

b= inf max I(y(u)),

where

['={yeC(Q H)|v=idon 9Q}.
Let Hy = span{¢y,...,¢r}. Then Hy is a subspace of H such that

H = QrenHy and H=H, & H;.

Let
B, ={ue€ H| [[ul| <r},

Q = (BrNHy) & {re|] 0 <r < R}

We have the following generalized mountain pass geometrical assump-
tions:

LEMMA 3.1.  Assume that A\, < ¢ < A\4+1 and g satisfies (g1) —(g4).
Then

(i) there are constants p > 0, a > 0 and a bounded neighborhood B,, of
0 such that I|yp,~pr = o, and

(ii) there is an e € OBy N Hi- and R > p such that if Q = (Br N Hy) ®
{re| 0 <r < R}, then I|sp <0, and
(iii) there exists ug € H such that ||ug|| > p and I(ug) < 0.

Proof. (i) Let u € Hi-. We note that
if ue H,CL,/(Azu + cAu)udr > Moy (Mer1 — ¢)||ull72) > 0.
Q
Thus by (¢3), (1.2) and the Hdélder inequality, we have
1 1
I(w) = S|Pl = SlIP-ul* — / a(z)G(u)

2 2 o
1 9 u

2 SIPvull” = llallee | Cilul

Q

1

> SlPsull® = flallooCtlful”

for C1,C] > 0. Since p > 2, there exist p > 0 and a > 0 such that if
u € 0B, then I(u) > a.
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(ii) Let u € (B, N Hy) @ {re| 0 < r}. Then u = v +w, v € B, N Hy,
w = re. We note that

if ve Hk,/<A21) + cAv)vdr < M\p(Ax — C)H/UH%Q(Q) < 0.
Q

Thus we have
1,

Iw) = 57 =3IPol = [ a6+ o

2 2

Since p > 2, there exists R > 0 such that if u € Q = (BrNH},)®{re| 0 <
r < R}, then I(u) <0

(iii) If we choose ¥ € H such that ||| =1, ¥ > 0 in Q and supp(¢)) C
Q" then we have

M) < SIPIE = ZIP- @I = [ afo) (@t — )

1 1
< S w0 — )l — / a(@)(aslo + el — a)
Ot

< Il = [ o) (@te — o)

1

- 5752 - /Q+ a(z) (azthy" — ayq)

for all ¢ > 0. Since p > 2, for ¢y great enough, uy = ¢y is such that
||uo|| > p and I(ug) < 0. O

THEOREM A .  Assume that \; < ¢ < A\g41, g satisfies (g1)-(g4)
and g(u)u — pG(u) is bounded. Then (1.3) has at least one bounded
solution.

Proof. By Proposition 2.1 and Proposition 2.2, I(u) € C'(H,R) and
satisfies the Palais-Smale condition. By Lemma 3.1, there are constants
p >0, a > 0 and a bounded neighborhood B, of 0 such that I\aBan#L >
a, and there is an e € 9B; N Hi- and R > p such that if Q = (Bgr N
Hy)@{re| 0 <r < R}, then I|sp < 0, and there exists uo € H such that
|luol| > p and I(up) < 0. By the generalized mountain pass theorem,
I(u) has a critical value b > «. Moreover b can be characterized as

b= inf maxT(y(u)).

where

I ={yeC(Q,H)|v=1idon 9Q}.
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We denote by @ a critical point of I such that I(@) = b. We claim that
there exists a constant C' > 0 such that

la* (2) ]| 2y < C (1 + L/ a—(x)dg;> "
where L = max 159(@)a — G(a).
In fact, we have
b < max I (tug), 0<t<1,

1 1
I(tug) = t* (§|]P+u0\|2 - §|]Pu0\|2) —/Qa(a:)G(tuo)da;

- /Q o ()G (tu)dar + / o ()G tu)da

Q
< #*|jugl* — a3t“/ at(x)ul + a4/ at(z) + a5t“/ a” (x)ul
Q Q Q
= C¥—Ctr+C+C't"

Since 0 <t <1, b is bounded: b < C.
We can write

IN
~
>
<
2
T

b = Ia)— '@
_ /Qa(x) Gg(a)a - G(u)) d
_ /Q ot (2) (%g(ﬂ)ﬁ - G(@)) de — /Q o (2) (%g(ﬂ)ﬂ - G(a)) da
<% - %) /Qcﬁ(x)g(a)a ~ max ]%g(ﬂ)ﬁ — G(u)] - a”(z)dz
(% _ %) M/Qcﬁ(x) (aslii]* — ay) — L/Q_ a”(z)dz,

where L = max 12g(@)@ — G(@)|. Thus we have

c(14e | o)z [awhar
> [/ﬂ <a+(x)i|a|)2] . (3.1)
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from which we can conclude that @ is bounded. In fact, suppose that @
is not bounded. Then for any R > 0, |a| > R. Thus we have

/QaJr(x)\zﬂ“ > R“/a+(x)dx

Q

for any R, which contradicts to the fact (3.1) and the proof of theorem
is complete. O

4. At least two solutions

THEOREM B.  Assume that A\, < ¢ < A\gy1, g satisfies (g1)-(g4),
g(u)u — pG(u) is not bounded and there exists a small € > 0 such that
Jo- a”(x) < e. Then (1.3) has at least two solutions, (i) one of which is
bounded and (ii) the other solution of which is large norm such that

maxgeo|u(x)| > M for some M > 0.

Proof. Assume that 3g(u)u — G(u) is not bounded and there exists
an € > 0 such that fQ, a”(z,t) < e. By Proposition 2.1 and Proposition
2.2, I € C'(H,R) and satisfies the Palais-Smale condition. By Lemma
3.1 and generalized mountain pass theorem, I(u) has a critical value b
with critical point @ such that I(@) = b. If [, a”(2)dz is sufficiently
small, by (3.1), we have

|a@iir<c

for C' > 0, from which we can conclude that u is bounded and the proof
of (i) is complete. O

Next we shall prove (ii). We may assume that R, < R, for all
n € N. Let us set D,, = Bg, N H,, 0D,, = 0Br, N H,.

LEMMA 4.1.  Assume that g satisfies (g1)-(g4). Then there exists
an R, > 0 such that

I(u) <0 for w € H,\Bg,, (4.1)
where B, = {u € H| ||u|| < R,}.
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Proof. Let us choose v € H such that |[¢|| = 1, ¥ > 0 in © and
supp(¢) C Q. Then, by (¢3), (1.2) and the Holder inequality, we have

1 1
M) = 5IPetwl = 1Pl = [ a(o)G(en)

1
< y%wa@/CWWMHw@mt
(9]

1
< 58 = alloCre + lalwart

for C1,C7 > 0. Since p > 2, there exist t,, great enough for each n and
an R, > 0 such that u, = t,¥ and I(u,) < 0 if w, € H,\Bg, and
|un|| > Ry, so the lemma is proved O

Let us set
Iy ={y€C([0,1], H)| v(0) = 0 and (1) = un}

and

b, = inf max [ N.
nf max (y(w)  ne

Proof of THEOREM B (ii).

We assume that g(u)u — pG(u) is not bounded and there exists an
e > 0 such that [, a”(z)dz < e. By Proposition 2.1 and Proposition
2.2, I € C'(H, R) and satisfies the Palais-Smale condition. By Lemma
4.1 there exists an R, > 0 such that I(u,) < 0 for u, € H,\Bg,.
We note that I(0) = 0. By Lemma 4.1 and the generalized mountain
pass theorem, for n large enough b, > 0 is a critical value of I and
lim, .o b, = +00. Let u, be a critical point of I such that I(u,) =
b,. Then for each real number M, maxg|u,(z)] > M. In fact, by
contradiction , A?u+ cAu = a(z)g(u) and maxq|u,(z)] < K imply that

1

T} < w06, = Gl [ Jale)l,

which means that b,, is bounded. This is absurd to the fact that
lim,, o b, = +00. Thus we complete the proof.
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