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GLOBAL SOLUTION AND BLOW-UP OF LOGARITHMIC

KLEIN-GORDON EQUATION

Yaojun Ye

Abstract. The initial-boundary value problem for a class of semilinear

Klein-Gordon equation with logarithmic nonlinearity in bounded domain
is studied. The existence of global solution for this problem is proved by

using potential well method, and obtain the exponential decay of global
solution through introducing an appropriate Lyapunov function. Mean-

while, the blow-up of solution in the unstable set is also obtained.

1. Introduction

In this paper, we are concerned with the initial-boundary problem for the
following logarithmic Klein-Gordon equation

(1.1) utt −∆u+ u+ ut = u log |u|2, (x, t) ∈ Ω× R+,

with the initial-boundary value conditions

(1.2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.3) u(x, t) = 0, (x, t) ∈ ∂Ω× R+,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω so that the
divergence theorem can be applied.

The problem (1.1)-(1.3) is applied in many branches of physics such as nu-
clear physics, optics and geophysics [6,22,24]. When there is no linear dissipa-
tive term ut in equation (1.1), P. Gorka [18] deals with the following problem

(1.4) utt −∆u+ u = εu log |u|2, (x, t) ∈ O × R+,

(1.5) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ O,

(1.6) u(x, t) = 0, (x, t) ∈ ∂O × R+,
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where O = [a, b], the parameter ε measures the force of the nonlinear interac-
tions. The problem (1.4)-(1.6) is a relativistic version of logarithmic quantum
mechanics introduced by I. Bialynicki-Birula and J. Mycielski [4,5]. In [18], the
author proved the global existence of weak solution for the problem (1.4)-(1.6)
by applying the Galerkin method, logarithmic Sobolev inequality and com-
pactness theorem. In [3], K. Bartkowski and P. Korka showed the existence of
classical solution and investigated weak solution for the corresponding Cauchy
problem of the equation (1.4) for O = R.

T. Hiramatsu et al. [21] introduced the following equation

(1.7) utt −∆u+ u+ ut + |u|2u = u log |u|2, (x, t) ∈ Ω× R+

for studying the dynamics of Q-ball in theoretical physics. The logarithmic
nonlinearity appears in inflation cosmology and supersymmetric field theories,
quantum mechanics and nuclear physics [2, 11,23]. By using the same method
and technique as the one in [18], X. S. Han [20] studied the weak solution of the
equation (1.7) with initial-boundary value conditions (1.2) and (1.3) in three
dimensional case.

For the initial-boundary value problem of a damped wave equation

(1.8) utt −∆u+ µut = a|u|p−2u, x ∈ Ω, t > 0,

(1.9) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.10) u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

F. Gazzola and M. Squassina [12] study the existence of local and global solu-
tion of the problem (1.8)-(1.10), and not only finite time blow-up for solution
starting in the unstable set is proved, but also high energy initial data for
which the solution blows up are constructed. Later, S. Gerbi and B. Said-
Houari [13–15] consider the problem (1.8)-(1.10) or the equation (1.8) with
dynamic boundary conditions. They obtained the existence of local and global
solution and gave the asymptotic stability and the blow-up result of solution.

Introducing a logarithmic nonlinear term u log |u|2 makes the problem (1.1)-
(1.3) different from the one (1.8)-(1.10). For this reason less results are, at
the present time, known for the logarithmic Klein-Gordon equation and many
problems remain unsolved.

Let us finally mention that a semilinear heat equation with logarithmic non-
linearity was studied by H. Chen and S. Y. Tian [9] and H. Chen, P. Luo and
G. W. Liu [10]. Moreover, there have been some works on the logarithmic
Schrödinger equation [7, 8, 16,17].

Motivated by the above researches, in this paper, we prove the global exis-
tence for the problem (1.1)-(1.3) by applying the potential well theory intro-
duced by D. H. Sattinger [28] and L. Payne and D. H. Sattinger [27]. Further-
more, we obtain the exponential decay and the blow-up result of solution for
this problem.
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We adopt the usual notation and convention. Let H1(Ω) denote the Sobolev
space with the usual scalar products and norm. H1

0 (Ω) denotes the closure
in H1(Ω) of C∞0 (Ω). For simplicity of notations, hereafter we denote by
‖ · ‖r the Lebesgue space Lr(Ω) norm and ‖ · ‖ denotes L2(Ω) norm, we write
the equivalent norm ‖∇ · ‖ instead of H1

0 (Ω) norm ‖ · ‖H1
0 (Ω). In addition,

Ci (i = 1, 2, . . .) denote various positive constants which depend on the known
constants and may be different at each appearance.

This paper is organized as follows: In the next section, we are going to give
some preliminaries. In Section 3, we will study the existence and exponential
decay of global solution of the problem (1.1)-(1.3). Section 4 is devoted to the
proof of blow-up result of solution in finite time.

2. Preliminaries

At first, we define the following functionals

(2.1) J(u) =
1

2
(‖∇u‖2 −

∫
Ω

u2 log |u|2dx) + ‖u‖2,

(2.2) K(u) = ‖∇u‖2 −
∫

Ω

u2 log |u|2dx+ ‖u‖2,

for u(t) ∈ H1
0 (Ω), and denote the total energy related to the equation (1.1) by

(2.3) E(t) =
1

2
(‖ut‖2 + ‖∇u‖2 −

∫
Ω

u2 log |u|2dx) + ‖u‖2 =
1

2
‖ut‖2 + J(u),

for u ∈ H1
0 (Ω), t ≥ 0 and

(2.4) E(0) =
1

2
(‖u1‖2 + ‖∇u0‖2 −

∫
Ω

u2
0 log |u0|2dx) + ‖u0‖2

is the initial total energy.
As in [27], The mountain pass value of J(u) (also known as potential well

depth) is defined as

(2.5) d = inf{sup
λ≥0

J(λu) : u ∈ H1
0 (Ω)/{0}}.

Now, we define the so called Nehari manifold (see [26,29]) as follows

N = {u ∈ H1
0 (Ω)/{0}; K(u) = 0}.

N separates the two unbounded sets

N+ = {u ∈ H1
0 (Ω)/{0}; K(u) > 0} ∪ {0}

and

N− = {u ∈ H1
0 (Ω)/{0}; K(u) < 0}.

Then, the stable set W and the unstable set U can be defined respectively by

W = {u ∈ H1
0 (Ω) : J(u) ≤ d} ∩ N+
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and

U = {u ∈ H1
0 (Ω) : J(u) ≤ d} ∩ N−.

It is readily seen that the potential well depth d defined in (2.5) may also be
characterized as

(2.6) d = inf
u∈N

J(u).

For the applications through this paper, we introduce the definition of the
weak solution for the problem (1.1)-(1.3) and list up some known lemmas.

Definition 2.1. A function u is said to be a weak solution of (1.1)-(1.3) on
[0, T ] if

u ∈ C([0, T ], H1
0 (Ω)), ut ∈ C([0, T ], L2(Ω)), utt ∈ C([0, T ], H−1(Ω)),

and u satisfies∫
Ω

uttϕdx+

∫
Ω

∇u∇ϕdx+

∫
Ω

utϕdx+

∫
Ω

uϕdx =

∫
Ω

u log |u|2ϕdx

for each test function ϕ ∈ H1
0 (Ω) and for almost all t ∈ [0, T ].

Lemma 2.1. Let r be a number with 2 ≤ r < +∞ if n ≤ 2 and 2 ≤ r ≤ 2n
n−2

if n > 2. Then there is a constant C depending on Ω and r such that

‖u‖r ≤ C‖∇u‖, ∀u ∈ H1
0 (Ω).

Lemma 2.2 ([9, 10, 19]). If u ∈ H1
0 (Ω), then for each a > 0, one has the

inequality∫
Ω

|u|2 log |u|dx ≤ ‖u‖2 log ‖u‖+
a2

2π
‖∇u‖2 − n

2
(1 + log a)‖u‖2.

Lemma 2.3. Let u(t) be a solution of the problem (1.1)-(1.3). Then E(t) is a
non-increasing function for t > 0 and

(2.7) E′(t) = −‖ut‖2 ≤ 0.

We conclude this section by stating a local existence result of the problem
(1.1)-(1.3), which can be established by a similar way as done in combination
of the arguments in [1, 12,25].

Theorem 2.1 (Local existence). Suppose that u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω). Then

there exists T > 0 such that the problem (1.1)-(1.3) has a unique local solution
u(t) which satisfies

u ∈ C([0, T ); H1
0 (Ω)), ut ∈ C([0, T ); L2(Ω)).

Moreover, at least one of the following statements holds true: (1) ‖ut‖2 +
‖∇u‖2 + ‖u‖2 →∞ as t→ T−; (2) T = +∞.
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3. Global existence and exponential decay

We can now proceed in the study of the existence of global solution for the
problem (1.1)-(1.3). For this purpose, we need the following lemmas.

Lemma 3.1. If u ∈ H1
0 (Ω) and ‖u‖ 6= 0, then we have

K(λu) = λ
d

dλ
J(λu)


> 0, 0 < λ < λ∗,

= 0, λ = λ∗,

< 0, λ∗ < λ < +∞,
where

λ∗ = exp

(‖∇u‖2 + ‖u‖2 − 2
∫

Ω
u2 log |u|dx

2‖u‖2

)
.

Proof. Since

J(λu) =
λ2

2
‖∇u‖2 + λ2‖u‖2 − (λ2 log λ)‖u‖2 − λ2

∫
Ω

u2 log |u|dx,

we get

(3.1)
d

dλ
J(λu) = λ(‖∇u‖2 + ‖u‖2 − 2

∫
Ω

u2 log |u|dx)− 2(λ log λ)‖u‖2.

Let d
dλJ(λu) = 0, then we have

λ∗ = exp

(‖∇u‖2 + ‖u‖2 − 2
∫

Ω
u2 log |u|dx

2‖u‖2

)
.

It follows from (2.2) that

(3.2) K(λu) = λ2(‖∇u‖2 + ‖u‖2 − 2

∫
Ω

u2 log |u|dx)− 2(λ2 log λ)‖u‖2.

By (3.1) and (3.2), the conclusion in Lemma 3.1 is valid. �

Lemma 3.2. Suppose that u ∈ H1
0 (Ω). Then

(3.3) d =
1

2
π

n
2 en.

Proof. We have from the logarithmic Sobolev inequality in Lemma 2.2 that

K(u) = ‖∇u‖2 −
∫

Ω

u2 log |u|2dx+ ‖u‖2

≥
(

1− a2

π

)
(‖∇u‖2 + ‖u‖2) + [n(1 + log a)− 2 log ‖u‖] · ‖u‖2(3.4)

for any a > 0. Taking a =
√
π, we obtain from (3.4) that

(3.5) K(u) ≥ [n(1 + log a)− 2 log ‖u‖] · ‖u‖2.
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We have from Lemma 3.1 that

(3.6) sup
λ≥0

J(λu) = J(λ∗u) =
1

2
K(λ∗u) +

1

2
‖λ∗u‖2.

We obtain from (3.5) and Lemma 3.1 that

0 = K(λ∗u) ≥ [n(1 + log a)− 2 log ‖λ∗u‖] · ‖λ∗u‖2,

then

(3.7) ‖λ∗u‖2 ≥ anen.

It follows from (3.6) and (3.7) that

(3.8) sup
λ≥0

J(λu) ≥ 1

2
anen.

By (2.5) and (3.8), we have that d = 1
2π

n
2 en. �

Lemma 3.3. Assume that E(0) < d. If u0 ∈ N+ and u1 ∈ L2(Ω), then
u(t) ∈ N+ for each t ∈ [0, T ).

Proof. From (2.3) and Lemma 2.3, we have

E(t) =
1

2
‖ut‖2 + J(u) ≤ 1

2
‖u1‖2 + J(u0) = E(0) < d,

for ∀t ∈ [0, T ), which implies that

(3.9) J(u) < d.

Suppose that there exists a number t∗ ∈ [0, T ) such that u(t) ∈ N+ on [0, t∗)
and u(t∗) 6∈ N+. Then, in virtue of the continuity of u(t), we see u(t∗) ∈ ∂N+.
From the definition of N+ and the continuity of K(u) with respect to t, we
have

(3.10) K(u(t∗)) = 0.

Assume that (3.10) holds, then we get from (3.5) that

(3.11) ‖u(t∗)‖2 ≥ 2d.

By (2.1), (2.2), (3.10) and (3.11), we have

(3.12) J(u(t∗)) =
1

2
‖u(t∗)‖2 +

1

2
K(u(t∗)) ≥ d,

which is contradictive with (3.9). Hence, the case (3.10) is impossible. Thus,
we conclude that u(t) ∈ N+ on [0, T ). �

Theorem 3.1. If u0 ∈ W, u1 ∈ L2(Ω) and E(0) < d, then the local solution
furnished in Theorem 2.1 is a global solution and T may be taken arbitrarily
large.
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Proof. It suffices to show that ‖ut‖2 +‖∇u‖2 +‖u‖2 is bounded independently
of t. Under the hypotheses in Theorem 3.1, we get from Lemma 3.3 that u ∈ W
on [0, T ). So, the following formula holds on [0, T ) by Lemma 2.2.

J(u) =
1

2
‖∇u‖2 − 1

2

∫
Ω

u2 log |u|2dx+ ‖u‖2

≥ 1

2

(
1− a2

π

)
‖∇u‖2 +

[
1 +

n

2
(1 + log a)− log ‖u‖

]
‖u‖2.(3.13)

By (2.1), (2.2) and u ∈ W, we obtain that

(3.14) J(u) =
1

2
‖u(t)‖2 +

1

2
K(u) ≥ 1

2
‖u‖2,

which implies that

(3.15) ‖u‖2 ≤ 2J(u) ≤ 2d.

It follows from (3.13) and (3.15) that

(3.16) J(u) ≥ 1

2

(
1− a2

π

)
‖∇u‖2 +

[
1 +

n

2
(1 + log a)− 1

2
log(2d)

]
‖u‖2.

By Lemma 3.2 and 0 < a ≤
√
π, we get that

1− a2

π
≥ 0, 1 +

n

2
(1 + log a)− 1

2
log(2d) > 0.

Thus, we have from (3.16) that

(3.17) J(u) ≥ C1

(
‖∇u‖2 + ‖u‖2

)
,

where

C1 = min

{
1

2
− a2

2π
, 1 +

n

2
(1 + log a)− 1

2
log(2d)

}
.

We have from (3.17) that

(3.18)
1

2
‖ut‖2 + C1(‖∇u‖2 + ‖u‖2) ≤ 1

2
‖ut‖2 + J(u) = E(t) ≤ E(0) < d,

which implies that

‖ut‖2 + ‖∇u‖2 + ‖u‖2 ≤ d

C2
< +∞,

where C2 = min{C1, 1}. The above inequality and the continuation principle
lead to the global existence of the solution u for the problem (1.1)-(1.3). �

Remark. Theorem 3.1 is still valid for the equation (1.1) without the dissipative
term ut.

The following theorem shows that the global solution of the problem (1.1)-
(1.3) is exponential decay.
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Theorem 3.2. Assume that E(0) < 1
2π

n
2 enα ≤ d, where α is a positive number

which satisfies 0 < α ≤ 1. If u0 ∈ W, u1 ∈ L2(Ω), then there exist two
positive constants M and k independent of t such that the global solution has
the following exponential decay property

0 < E(t) ≤Me−kt,∀t ≥ 0.

Proof. By Lemma 3.3, we see that u(t) ∈ N+ for all t ≥ 0. Thus, we have
0 < E(t) < d for all t ≥ 0. In order to prove the exponential decay of global
solution. We define

(3.19) F (t) = E(t) + ε

∫
Ω

uutdx,

where ε > 0 will be determined later.
It is easy to prove that there exist two positive constants ξ1 and ξ2 depending

on ε such that

(3.20) ξ1E(t) ≤ F (t) ≤ ξ2E(t),

for ∀t ≥ 0. In fact, we get from (3.18) and (3.19) that

(3.21) F (t) ≤ E(t) +
ε

2
(‖ut‖2 + ‖u‖2) ≤ (1 + ε+

ε

2C1
)E(t) = ξ2E(t).

On the other hand, by (3.18) and (3.19), we obtain the following inequality

F (t) ≥ E(t)− ε

2
‖ut‖2 −

ε

2
‖u‖2

≥ 1

2
(1− ε)‖ut‖2 + J(u)− ε

2C1
E(t).(3.22)

By choosing ε small enough such that 0 < ε ≤ min{1, 2C1

2C1+1}, it follows from

(3.22) that

(3.23) F (t) ≥ (1− ε− ε

2C1
)E(t) = ξ1E(t).

From (3.21) and (3.23), the inequality (3.20) is valid.
We now differentiate (3.19), by using the equation (1.1) and Lemma 2.3, to

obtain
(3.24)

F ′(t) = (ε− 1)‖ut‖2 − ε‖∇u‖2 − ε‖u‖2 − ε
∫

Ω

uutdx+ ε

∫
Ω

u2 log |u|2dx.

For any γ > 0, We have from Young’s inequality that

(3.25)

∣∣∣∣ ∫
Ω

uutdx

∣∣∣∣ ≤ 1

4γ
‖ut‖2 + γ‖u‖2.

Therefore, inserting (3.25) into (3.24), we get
(3.26)

F ′(t) ≤ (ε+
ε

4γ
− 1)‖ut‖2 − ε‖∇u‖2 + ε(γ − 1)‖u‖2 + ε

∫
Ω

u2 log |u|2dx.
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By using (2.3) and (3.26), for any positive constant Λ, we obtain that

F ′(t) ≤ − ΛεE(t) +

[
ε(1 +

Λ

2
+

1

4γ
)− 1

]
‖ut‖2

+ ε

(
Λ

2
− 1

)
‖∇u‖2 + ε(Λ + γ − 1)‖u‖2(3.27)

+ ε

(
1− Λ

2

)∫
Ω

u2 log |u|2dx.

Now, choosing 0 < Λ ≤ 1, and by Lemma 2.2 and (3.15), we have

F ′(t) ≤ − ΛεE(t) +

[
ε(1 +

Λ

2
+

1

4γ
)− 1

]
‖ut‖2

− ε
(

1− Λ

2

)(
1− a2

π

)
‖∇u‖2(3.28)

+ ε

{
Λ + γ − 1 +

(
1− Λ

2

)
[log(2J(t))− n(1 + log a)]

}
‖u‖2.

By 0 < Λ ≤ 1 and J(t) < E(0) < 1
2π

n
2 enα ≤ d, we select the constant a to

meet
√
πα

1
n ≤ a ≤

√
π, and take γ > 0 small sufficiently such that

γ < 1− Λ +

(
Λ

2
− 1

)
[log(2J(t))− n(1 + log a)]

< 1− Λ +

(
Λ

2
− 1

)
[log(π

n
2 enα)− n(1 + log a)]

= 1− Λ +

(
Λ

2
− 1

)
log

π
n
2 α

an
.

Then, we obtain

(3.29) F ′(t) ≤ −ΛεE(t) +

[
ε(1 +

Λ

2
+

1

4γ
)− 1

]
‖ut‖2.

Now, choosing ε so small enough that

ε(1 +
Λ

2
+

1

4γ
)− 1 < 0,

then the inequality (3.29) implies that

(3.30) F ′(t) ≤ −ΛεE(t), ∀t ≥ 0.

We conclude from (3.20) and (3.30) that

(3.31) F ′(t) ≤ −kF (t), ∀t ≥ 0,

where k = Λε/ξ2 > 0.
Integrating the differential inequality (3.31) from 0 to t gives the following

exponential decay estimate for function F (t)

(3.32) F (t) ≤ F (0)e−kt, ∀t ≥ 0.
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Consequently, we obtain from (3.20) once again that

E(t) ≤Me−kt, ∀t ≥ 0,

where M = F (0)/ξ1. This completes the proof of Theorem 3.2. �

4. Blow-up result

In this section, we are concerned with the blow-up property of solution for
the initial boundary value problem (1.1)-(1.3) and give the estimate of the
lifespan of solution. For this purpose, we give the following lemma.

Lemma 4.1. Let u(t) be a solution of (1.1)-(1.3) which is given by Theorem
2.1. If u0 ∈ U and E(0) < d, then u(t) ∈ U and E(t) < d, for all t ≥ 0.

Proof. It follows from the conditions in Lemma 4.1 and Lemma 2.3 that

E(t) ≤ E(0) < d, ∀t ∈ [0, T ).

Therefore, we have from (2.3) that

(4.1) J(u) ≤ E(t) < d, ∀t ∈ [0, T ).

Next, let us assume by contradiction that there exists t∗ ∈ [0, T ) such that
u(t∗) 6∈ U , then by continuity, we have K(u(t∗)) = 0. This implies that u(t∗) ∈
N . We get from (2.6) that J(u(t∗)) ≥ d, which is contradiction with (4.1).
Consequently, the conclusion in Lemma 4.1 holds. �

Theorem 4.1. Assume that u0 ∈ U , u1 ∈ L2(Ω) satisfies
∫

Ω
u0(x)u1(x)dx 6= 0

and 0 < E(0) < min{d, 3
4π

n
2 e

n}. Then the solution u(t) in Theorem 2.1 of the
problem (1.1)-(1.3) blows up in finite T∗ < +∞, this means that

lim
t→T−∗

‖u(t)‖2 = +∞.

Proof. By u0 ∈ U , E(0) < d and Lemma 4.1, we obtain u ∈ U for all t ∈ [0, T ].
Thus, we have

(4.2) K(u) = ‖∇u‖2 + ‖u‖2 −
∫

Ω

u2 log |u|2dx < 0

for all t ∈ [0, T ]. We have from (4.2) and Lemma 2.2 that

(4.3) (1− a2

π
)‖∇u‖2 + ‖u‖2 + [n(1 + log a)− log ‖u‖2] · ‖u‖2 < 0.

We conclude from a =
√
π and (4.3) that

n(1 + log a)− log ‖u‖2 < 0,

which implies that

(4.4) ‖u(t)‖2 > 2d, ∀t ∈ [0, T ].
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Assume by contradiction that the solution u(t) is global. Then for any T > 0,
we define Θ(t) : [0, T ]→ [0,+∞) by

(4.5) Θ(t) = ‖u(t)‖2 +

∫ t

0

‖u(s)‖2ds+ (T − t)‖u0‖2.

Noting that Θ(t) > 0 for all t ∈ [0, T ]. By the continuity of the function Θ(t),
there exists µ > 0 (independent of the choice of T ) such that

(4.6) Θ(t) ≥ µ > 0, ∀t ∈ [0, T ].

By differentiating on both sides of (4.5), we get

Θ′(t) = 2

∫
Ω

uutdx+ ‖u(t)‖2 − ‖u0‖2

= 2

∫
Ω

uutdx+ 2

∫ t

0

∫
Ω

u(s)ut(s)dxds.(4.7)

Taking the derivative of the function Θ′(t) in (4.7), we obtain

(4.8) Θ′′(t) = 2‖ut‖2 + 2

∫
Ω

uuttdx+ 2

∫
Ω

uutdx.

We get from (1.1) and (4.8) that

(4.9) Θ′′(t) = 2(‖ut(t)‖2 +

∫
Ω

u(t)2 log |u(t)|2dx− ‖∇u(t)‖2 − ‖u(t)‖2).

We have from (4.5), (4.7) and (4.9) that

Θ(t)Θ′′(t)− 3

2
Θ′(t)2

= 2Θ(t)[‖ut(t)‖2 +

∫
Ω

u(t)2 log |u(t)|2dx− ‖∇u(t)‖2 − ‖u(t)‖2](4.10)

− 6[Θ(t)− (T − t)‖u0‖2]×
[
‖ut(t)‖2 +

∫ t

0

‖ut(s)‖2ds
]

+ 6χ(t),

where

χ(t) =

[
‖u(t)‖2 +

∫ t

0

‖u(s)‖2ds
]
×
[
‖ut(t)‖2 +

∫ t

0

‖ut(s)‖2ds
]

−
[ ∫

Ω

uutdx+

∫ t

0

∫
Ω

u(s)ut(s)dxds

]2

.(4.11)

By using Schwarz inequality, we obtain

(4.12)

(∫
Ω

uutdx

)2

≤ ‖u(t)‖2‖ut(t)‖2,

(4.13)

(∫ t

0

∫
Ω

uutdxds

)2

≤
∫ t

0

‖u(s)‖2ds
∫ t

0

‖ut(s)‖2ds,
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and

2

∫ t

0

∫
Ω

u(s)ut(s)dxds

∫
Ω

uutdx

≤ ‖ut(t)‖2
∫ t

0

‖u(s)‖2ds+ ‖u(t)‖2
∫ t

0

‖ut(s)‖2ds.(4.14)

These inequalities (4.11)-(4.14) entail χ(t) ≥ 0 for all t ∈ [0, T ]. Therefore, we
reach the following differential inequality from (4.10) that

(4.15) ΘΘ′′(t)− 3

2
Θ′(t)2 ≥ Θ(t)Γ(t),∀t ∈ [0, T ],

where

Γ(t) = 2[‖ut(t)‖2 +

∫
Ω

u(t)2 log |u(t)|2dx− ‖∇u(t)‖2 − ‖u(t)‖2]

− 6

[
‖ut(t)‖2 +

∫ t

0

‖ut(s)‖2ds
]
.(4.16)

We have from (2.3) and Lemma 2.2 that

Γ(t) ≥ − 8E(t) + 6‖u(t)‖2 + 2

(
1− a2

π

)
‖∇u(t)‖2

+ [log ‖u(t)‖2 − n(1 + log a)]‖u(t)‖2 − 6

∫ t

0

‖ut(s)‖2ds.(4.17)

By (3.3), (4.4) and a =
√
π, we have from (4.17) that

(4.18) Γ(t) ≥ −8E(t) + 6‖u(t)‖2 − 6

∫ t

0

‖ut(s)‖2ds.

By (2.7), we get

(4.19) Γ(t) ≥ −8E(0) + 6‖u(t)‖2 + 2

∫ t

0

‖ut(s)‖2ds.

Hence, we conclude from (4.4) and E(0) < d that

(4.20) Γ(t) > −8E(0) + 12d = 8[d− E(0)] + 4d > 0.

Therefore, there exists η > 0 which is independent of T such that

(4.21) Γ(t) ≥ η > 0, ∀t ≥ 0.

It follows from (4.6), (4.15) and (4.21) that

(4.22) ΘΘ′′(t)− 3

2
Θ′(t)2 ≥ µη > 0, ∀t ∈ [0, T ].

By the differential inequality (4.22), we have

(4.23) Θ(t) ≥ Θ(0)(
1− Θ′(0)

2Θ(0) t

)2 .
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Hence, there exists T∗ such that

(4.24) 0 < T∗ <
2Θ(0)

Θ′(0)
≤ T,

and we have

(4.25) lim
t→T−∗

Θ(t) = +∞.

From the definition (4.5) of Θ(t), (4.25) means that

lim
t→T−∗

‖u(t)‖2 = +∞.

Thus we can not suppose that the solution of (1.1)-(1.3) is global.
This finishes the proof of Theorem 4.1. �
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