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GLOBAL SOLUTIONS OF THE EXPONENTIAL WAVE

EQUATION WITH SMALL INITIAL DATA

Hyungjin Huh

Abstract. We study the initial value problem of the exponential wave
equation in R

n+1 for small initial data. We shows, in the case of n = 1,
the global existence of solution by applying the formulation of first order
quasilinear hyperbolic system which is weakly linearly degenerate. When
n ≥ 2, a vector field method is applied to show the stability of a trivial
solution φ = 0.

1. Introduction

We are interested in the initial value problem of the following exponential
wave equation
(1.1)

∂

∂t

(

∂tφ exp
(

1
2 |∇φ|

2− 1
2 (∂tφ)

2
))

−
n
∑

i=1

∂

∂xi

(

∂iφ exp
(

1
2 |∇φ|

2− 1
2 (∂tφ)

2
))

= 0,

where φ : Rn+1 → R is a scalar function.
An exponentially harmonic map was introduced by J. Eells and L. Lemaire

[3, 4], which generalizes usual harmonic map in the following sense. Let (M, g)
and (N, h) be two Riemannian manifolds and ψ :M → N , a smooth map. The
exponentially harmonic map is a critical point of the following functional

E(φ) =

∫

M

exp(e(ψ))dµ(ψ),

where dµ(ψ) is the volume element and e(ψ) = 1
2
∂ψi

∂xk

∂ψj

∂xl g
klhij is the energy

density of the map ψ. The exponentially harmonic map can be generalized to
the exponential wave map

φ : Rn+1 → (N, h),
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where Rn+1 is Minkowski space equipped with the metric −dt2+dx21+· · ·+dx2n.
Then exponential wave map is the critical point of the functional

E(φ) =

∫

Rn+1

exp (e(φ)) dx dt,(1.2)

where e(φ) = 1
2

(

∂φi

∂xk

∂φj

∂xk
hij − ∂φi

∂t
∂φj

∂t
hij

)

is the energy density of the map φ.

Some exact solutions of exponential wave maps were investigated in [8] and
geometric aspects discussed in [2]. They also described the applications of
exponential wave maps in Kaluza-Klein gravity [15] by coupling gravitational
fields with exponential scalar fields.

We study the initial value problem of the exponential wave equation (1.1)
which is Euler-Lagrange equation of (1.2) with N = R. In particular, we
are interested in the global solution for small initial data. According to the
dimension n, we apply a different method to prove the existence of global
solution.

The equation (1.1) in R
1+1 reads as

(1 − φ2t )φtt + 2φtφxφtx − (1 + φ2x)φxx = 0.(1.3)

Denoting ω = φx and v = φt, the Cauchy problem of equation (1.3) can be
formulated in the form

∂t

(

ω

v

)

+

(

0 −1
ω2+1
v2−1

2vω
1−v2

)

∂x

(

ω

v

)

= 0,(1.4)

with initial data ω(0, x) = ω0(x) and v(0, x) = v0(x). Our first result is as
follows.

Theorem 1.1. For the initial data ω0, v0 ∈ C1(R) satisfying

θ ≡ sup
x∈R

{(1 + |x|)1+µ (|ω0(x)| + |v0(x)| + |ω′
0(x)|+ |v′0(x)|)} <∞,

there exists θ0 > 0 so small that if θ ∈ [0, θ0], then the equation (1.4) has global
solution.

To prove Theorem 1.1 we observe that the first order quasilinear hyperbolic
system (1.4) has so-called ‘weakly linearly degenerate’ structure. Furthermore
we show that the initial value problem of (1.3) around non-trivial solution
φ(t, x) = ax+ b (a 6= 0) develops the finite time blow-up.

For the Cauchy problem of the equation (1.1) in R
n+1 (n ≥ 2), we have the

following result.

Theorem 1.2. Let n ≥ 2 and f, g ∈ C∞
0 (Rn) be given. We consider the initial

value problem of the equation (1.1) in R
n+1 with the initial data

φ(0, x) = εf(x), ∂tφ(0, x) = εg(x).

Then, there exists sufficiently small ε0 such that if ε ≤ ε0, then the smooth

solution of the equation (1.1) exists globally.
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The proof actually does not require compact support of the initial data;
appropriate decays at infinity is enough. Furthermore the asymptotic behavior
of the solution can be obtained in the middle of proof. To prove Theorem 1.2
we make use of a vector field method [9]. Especially we follow the idea of H.
Lindblad [13] in which the global existence of the minimal surface equation is
proved for small initial data.

We raise and lower indices with the Minkowski metric η = (ηαβ) = diag(−1,
1, . . . , 1). We also use the summation convention for the repeated indices.
Greek indices are used to denote 0, . . . , n, while Latin indices are for 1, . . . , n.

In Section 2, we collect some preliminaries. Theorem 1.1 is proved in Section
3 and Theorem 1.2 in Section 4.

2. Preliminaries

For the completeness of exposition, we briefly describe the known facts with-
out proofs. The proofs can be found in references quoted below.

For the first order quasilinear hyperbolic system, we refer to [1, 10]. Consider
Cauchy problem

ut +A(u)ux = 0, u(0, x) = ϕ(x),(2.1)

where A(u) = (aij(u)) is an m × m matrix with suitably smooth elements
aij(u), and ϕ(x) is a C1 vector function of x. Suppose that A(u) has m
real eigenvalues λ1(u), . . . , λm(u) and a complete system of right eigenvectors
A(u)ri(u) = λi(u)ri(u). We also suppose that the system (2.1) is strictly hy-
perbolic in a neighborhood of u = 0, namely

λ1(0) < · · · < λm(0).(2.2)

Definition 2.1. The i-th characteristic λi(u) is weakly linearly degenerate,

if, along the i-th characteristic trajectory u = u(i)(s) passing through u = 0,
defined by

du

ds
= ri(u), s = 0 : u = 0,

we have

∇λi(u)ri(u) ≡ 0 for small |u|,
namely,

λi

(

u(i)(s)
)

≡ λi(0) for small |s|.

If all characteristics are weakly linearly degenerate, then system (2.1) is called

to be weakly linearly degenerate.

The following theorem [11] will be made use of.

Theorem 2.2. Suppose that (2.2) holds and system (2.1) is weakly linearly

degenerate. Suppose furthermore that A(u) ∈ C2 in a neighborhood of u = 0
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and ϕ is a C1 vector function satisfying that there exists a constant µ > 0 such

that

θ ≡ sup
x∈R

{(1 + |x|)1+µ(|ϕ(x)| + |ϕ′(x)|)} <∞.

Then there exists θ0 > 0 so small that for any given θ ∈ [0, θ0], Cauchy problem

(2.1) admits a unique global C1 solution u = u(t, x) on t ≥ 0.

The next review is for the proof of Theorem 1.2. We refer to [9, 16]. Let us
introduce the vector fields

Ωµν = xµ∂ν − xν∂µ, S = xµ∂µ

which are the rotation and the scaling operators in R
n+1. In what follows, the

vector fields ∂µ, S, Ωµν (µ < ν) are denoted by Γk, k = 0, . . . , (n+1)(n+2)
2 . We

use the multi-index notation ΓI = ΓI11 · · · ΓImm . We recall the commutation
relations between wave operator � = ∂µ∂

µ and Γ.

[�, S] = 2�,

[�, ∂µ] = 0, 0 ≤ µ ≤ n,

[�,Ωµν ] = 0, 0 ≤ µ < ν ≤ n.

The following relations can be found

[Γk, ∂ν ] = a
µ
νk∂µ

for some suitable constant coefficients aµνk. Let us introduce the null forms

Q̃(φ, ψ) = ∂tφ∂tψ −
n
∑

i=1

∂iφ∂iψ,

Qαβ(φ, ψ) = ∂αφ∂βψ − ∂αψ∂βφ for α, β = 0, 1, . . . , n.

(2.3)

Let Q stand for any of the above null forms. Then the following commutation
relations hold

(2.4) ΓQ(φ, ψ) = Q(Γφ, ψ) +Q(φ,Γψ) + bµνQµν(φ, ψ)

for some constants bµν . The following lemma in [16] will be used to give time
decay factor 1

1+t to the quadratic terms Q.

Lemma 2.3. Let Q be one of the null forms in (2.3). Then if t > 0,

|Q(φ, ψ)(t, x)| ≤ C

1 + t+ |x|
∑

|I|=1

|ΓIφ(t, x)|
∑

|I|=1

|ΓIψ(t, x)|.

Combining the above lemma with (2.4), one can easily verify.

Corollary 2.4. Let Q be one of the null forms in (2.3). Then if t > 0,

(1 + t+ |x|)
∑

|I|≤M
|ΓIQ(φ, ψ)| ≤ CM

∑

1≤|I|≤M+1

|ΓIφ|
∑

1≤|I|≤M+2

2

|ΓIψ|
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+ CM
∑

1≤|I|≤M+1

|ΓIψ|
∑

1≤|I|≤M+2

2

|ΓIφ|.

To estimate L2 norm of the solution itself φ, use will be made of the following
lemma, the proof of which is in [12, 13].

Lemma 2.5. If u solve the Cauchy problem

�u =

n
∑

α=0

∂αGα, u(0, ) = εf, ut(0, ) = εg,

then

‖u(t, ·)‖L2 ≤
n
∑

α=0

∫

‖Gα(s, ·)‖L2ds+ C(f, g,G0(0, ·))m(t)ε.

where m(t) = 1 if n ≥ 3, m(t) = log(2 + t) if n = 2 and C(f, g,G0(0, ·)) is

some constant depending on some weighted Sobolev norm of initial data f and

g.

We also use the following L1 − L∞ estimate in [6].

Lemma 2.6. The solution u of

�u(t, x) = F (t, x), u(0, ·) = εf, ∂tu(0, ·) = εg, (t, x) ∈ R
n+1

satisfies

|u(t, x)| ≤ C(1+t+|x|)−n−1

2

(

∑

|I|≤n−1

∫ t

0

‖ ΓIF (s, ·)
(1 + s+ | · |)n−1

2

‖L1 ds+C(f, g)ε
)

.

3. Proof of Theorem 1.1

In this section we are interested in the exponential wave equation in R
1+1.

(1 − φ2t )φtt + 2φtφxφtx − (1 + φ2x)φxx = 0.(3.1)

Applying the formulation of the first order hyperbolic system, we show the
global existence of the solution to (3.1) for sufficiently decaying initial data.
Let ω = φx, v = φt and U = (ω, v)T . Then the equation (3.1) can be written
in the form

∂tU +A(U)∂xU = 0, with A(U) =

(

0 −1
ω2+1
v2−1

2vω
1−v2

)

.(3.2)

The following eigenvalues of A(U) in (3.2) are well-defined distinct real values
in the neighborhood of (ω, v) = (0, 0)

λ1 =
vω

1− v2
−

√
1 + ω2 − v2

1− v2
, λ2 =

vω

1− v2
+

√
1 + ω2 − v2

1− v2
.

The corresponding right eigenvectors Ari = λiri are

r1 = (v2 − 1, vω −
√

1 + ω2 − v2)T , r2 = (v2 − 1, vω +
√

1 + ω2 − v2)T .



816 HYUNGJIN HUH

A calculation shows that

∇λ1 · r1
= (∂ωλ1, ∂vλ1) · r1

=

(

v

1− v2
− ω

(1 − v2)
√
1 + ω2 − v2

)

· (v2 − 1)

+

(

ω(v2 + 1)

(1− v2)2
+
v(1 − v2)− 2v(1 + ω2 − v2)

(1− v2)2
√
1 + ω2 − v2

)

· (vω −
√

1 + ω2 − v2).

The above quantity is not identically zero near (ω, v) = (0, 0), i.e., not linearly
degenerate in the sense of P. D. Lax. Here the ‘weakly linearly degenerate’
comes in the story. We can solve the following system of ordinary differential
equations on small |s|

d

ds

(

ω

v

)

=

(

v2 − 1

vω −
√
1 + ω2 − v2

)

with

(

ω(0)
v(0)

)

=

(

0
0

)

.(3.3)

To show that (3.2) is weakly linearly degenerate we have to check d
ds
(∇λ1 ·

r1)(s) = 0 for small |s|. Then ∇λ1 · r1(s) = ∇λ1 · r1(0) = 0. In fact, let f be
the solution to the ordinary differential equation

d

ds
f(s) = f2(s)− 1, f(0) = 0.

We can check that v(s) = f(s) and ω(s) = f(s) are the solution to (3.3) by the
uniqueness of local solution. Then we have d

ds
(∇λ1 · r1)(s) = 0 along the first

characteristic trajectory. The corresponding quantity for the eigenvalue λ2

∇λ2 · r2

=

(

v

1− v2
+

ω

(1− v2)
√
1 + ω2 − v2

)

· (v2 − 1)

+

(

ω(v2 + 1)

(1− v2)2
− v(1− v2)− 2v(1 + ω2 − v2)

(1− v2)2
√
1 + ω2 − v2

)

· (vω +
√

1 + ω2 − v2)

vanishes along second characteristic trajectory

d

ds

(

ω

v

)

=

(

v2 − 1

vω +
√
1 + ω2 − v2

)

with

(

ω(0)
v(0)

)

=

(

0
0

)

by putting ω(s) = −g(s) and v(s) = g(s), where g is defined by d
ds
g(s) =

1−g2(s), g(0) = 0. Therefore we can check that system (3.2) is weakly linearly
degenerate. Applying Theorem 2.2 we can prove Theorem 1.1.

We next consider the Cauchy problem around non-trivial static solutions of
(3.1). The finite time blow up result will be obtained. The assumption φt ≡ 0
implies that φxx = 0 which leads to a static solution ax+ b for some constants
a and b. Substitute φ(x, t) = ax+ b+ h(x, t) into (3.1) then we obtain

(1− h2t )htt + 2(a+ hx)hthtx − (1 + (a+ hx)
2)hxx = 0.
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Let ω = hx, v = ht and U = (ω, v)T . Then we have

∂tU +Aa(U) ∂xU = 0, with Aa(U) =

(

0 −1
(a+ω)2+1
v2−1

2v(a+ω)
1−v2

)

.(3.4)

Let λaj , r
a
j be the corresponding eigenvalue, eigenvector of Aa. The same cal-

culation as before shows ∇λa1 · ra1 6= 0 in the neighborhood of (ω, v) = (0, 0).

In fact we can check that ∇λa1 · ra1 (0, 0) = a√
1+a2

− a
√
1 + a2 6= 0 for a 6= 0.

Therefore the well-known results of F. John [7] say that the first order deriva-
tives of the C2 solution to the Cauchy problem (3.4) with a 6= 0 must blow up
in a finite time.

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2 which implies the stability of trivial
static solution of the equation (1.1). In fact, static assumption ∂tφ ≡ 0 leads
to elliptic equation

∆φ +

n
∑

i,j=1

∂iφ∂jφ∂ijφ = 0(4.1)

which was derived from the variational principle of
∫

Rn exp(12 |∇u|2)dx in [5].
A real function is called an exponentially harmonic function if it satisfies (4.1).
It was proved in [14] that any bounded exponentially harmonic function must
be constant. To show the stability of trivial solution φ ≡ 0, we consider the
following initial value problem.

∂

∂t

(

∂tφ exp
(

1
2 |∇φ|

2− 1
2 (∂tφ)

2
))

−
n
∑

i=1

∂

∂xi

(

∂iφ exp
(

1
2 |∇φ|

2− 1
2 (∂tφ)

2
))

= 0,

(4.2)

φ(0, x) =εf(x), ∂φ(0, x) = εg(x),(4.3)

where n ≥ 2 and f, g ∈ C∞
0 (Rn).

First of all we turn into the question of local existence of solution. We can
rewrite the equations (4.2) in the following form

�φ+ Cαβ∂αβφ = 0,

where Cαβ = Cαβ(∂φ) are polynomials of order 2. We also note that C(0) = 0
and

(4.4) Cαβ(∂φ) = Cβα(∂φ).
To prove the local well-posedness in the suitable Sobolev spaces, let us use the
energy estimate for the following equation

(4.5) �φ+ Cαβ(t, x)∂αβφ = f,
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under the assumptions |C| =
∑

|Cαβ| ≤ 1
2 and Cαβ(t, x) = Cβα(t, x). Multiply-

ing ∂tφ and integrating over Rn, we obtain
∫

Rn

∂tφ�φ+ ∂tφCαβ∂αβφ =

∫

Rn

∂tφ f.

Using the fact that Cαβ = Cβα and integrating by parts, we deduce

∂t

∫

Rn

1

2
|∂φ|2 + Cij∂iφ∂jφ− C00∂0φ∂0φ

=

∫

Rn

∂0Cij∂iφ∂jφ− ∂iCij∂0φ∂jφ− ∂jCij∂0φ∂iφ

−
∫

Rn

∂0φf + ∂iC00∂0φ∂0φ+ ∂0C00∂0φ∂0φ.

(4.6)

Integrating over [0, T ], taking into account the smallness of Cαβ and applying
Hölder inequality on the right hand side of (4.6), we obtain

(4.7)

‖∂φ(t)‖L2 ≤ C exp(
∫ t

0
|∂C(τ)|dτ) ‖∂φ(0)‖L2

+ C

∫ t

0

exp(
∫ t

s
|∂C(τ)|dτ)‖f(s, ·)‖L2ds,

where |∂C(τ)| = ∑ supx |∂Cαβ(τ, x)| and the constant C depends only on the
L∞ norm of Cαβ . Differentiation of (4.5) with respect to time or the spatial
variable shows that each partial derivative of φ satisfies an equation with the
same principal part as (4.5) and remainder terms depending on the derivatives
of C, f and φ of lower order. Thus one can obtain energy estimates of for the
higher order derivatives of φ.

Now we will present the proof of Theorem 1.2. Below we concentrate on
the case of n = 2. The case n ≥ 3 is similar and even simpler due to the
faster decays near infinity of the solutions to the linear wave equation. We also
mention that the main part of our proof is a direct adaptation of the argument
in [13].

We can rewrite (4.2) as wave equation with a right hand side in divergence
form

�φ = ∂µ
(

(

1− e−
1
2
Q̃(φ, φ)

)

∂µφ
)

,(4.8)

where we denote exp(12 |∇φ|2 − 1
2 |∂tφ|2) = e−

1
2
Q̃(φ,φ). Applying ΓI to the both

sides of (4.8), we get

�ΓIφ =

2
∑

µ=0

∂µ

(

∑

Gi1,·,ik,I1,·,Ik(Q)∂i1Γ
I1φ · · · ∂ikΓIkφ

)

.(4.9)

Note that a right hand side of (4.9) is in the divergence form andGi1,·,ik,I1,·,Ik(Q)
is bounded function for small Q.
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Also we can alternatively write (4.2) as a wave equation with the double null
forms

�φ+
1

2
Q̃(φ, Q̃(φ, φ)) = 0.(4.10)

Applying ΓI , we obtain

�ΓIφ− 1

2
Q̃(φ, Q̃(φ, ΓIφ))

=
∑

k≥3,|I1|+···+|Ik|≤|I|+1

|Ii|≤
|I|+1

2
,i<k,|Ik|≤|I|

Hi1,...,ik,I1,...,Ik(φ,Q(φ, φ))(∂i1Γ
I1φ) · · · (∂i1ΓI1φ),

(4.11)

where H is a bounded function for small φ, Q(φ, φ) and the coefficients of the
highest order terms are symmetric in the sense of (4.4). Finally we write (4.2)
in the form suitable for applying the L1 − L∞ estimate of Lemma 2.6.

�ΓIφ =
∑

k≥3

|I1|+···+|Ik|≤|I|

K
i0,··· ,ik
I1,··· ,Ik(Q(φ, φ))Qi0i1

(

ΓI1φ,Qi0i1(ΓI2φ, ΓI3φ)
)

×Qi4i5(ΓI4φ,ΓI5φ) · · ·Qik−1ik(ΓIk−1φ,ΓIkφ),

(4.12)

where ij−1ij is the index for denoting the several terms under a fixed I1, . . . , Ik
and K is a bounded function for small Q(φ, φ).

We will prove that following bounds are guaranteed all the time if L is
sufficiently large and ε is sufficiently small.

M1(t) =
∑

|I|≤N
‖ ∂ΓIφ(t, ·) ‖L2≤ L ε(1 + t)δ,

M2(t) =
∑

|I|≤N
‖ ΓIφ(t, ·) ‖L2≤ L ε(1 + t)δ,

N1(t) =
∑

|J|≤N+1

2
+1

‖ ΓJφ(t, ·) ‖L∞≤ L ε(1 + t)−
1
2 ,

(4.13)

where 0 < δ < 1
2 fixed. Applying the energy estimates (4.7) to (4.11), we have

(4.14)

M1(t) ≤ Cε exp(
∫ t

0
N1(τ)

2dτ) +

∫ t

0

exp(
∫ t

s
N1(τ)

2dτ)C(N1(s))N1(s)
2M1(s)ds.

Lemma 2.5 applied to (4.9) gives

(4.15) M2(t) ≤ C

(

C(f, g)m(t)ε+

∫ t

0

C(N1(s))N1(s)
2M1(s)ds

)

.
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Finally, Lemma 2.6 applied to (4.12), Lemma 2.3 and Cauchy Schwartz in-
equality give

(4.16) N1(t) ≤ C(1 + t)−
1
2

(

C(f, g)ε+

∫ t

0

N1(s)

(1 + s)
1
2
+1

(M1(s) +M2(s))
2ds

)

,

if N+1
2 + 1 + n − 1 ≤ N , i.e., N ≥ 2n + 1. We note that the null condition

produced an extra power of (1 + s)−1 in the integral (4.16). From the bound
(4.13) we can get

exp
(

∫ t

s

N1(τ)
2dτ
)

≤ exp

(

ε2L2

∫ t

s

(1 + τ)−1dτ

)

=

(

1 + t

1 + s

)ε2L2

,

so it follows from (4.14)

M1(t) ≤ Cε(1 + t)K
2ε2 +

∫ t

0

Cε3L3

(

1 + t

1 + s

)ε2L2

(1 + s)δ−1ds ≤ Lε

2
(1 + t)δ,

if L is sufficiently large and ε is sufficiently small. Also, from (4.15) we get

M2(t) ≤ Cε log(2 + t) +

∫ t

0

Cε3L3(1 + s)δ−1ds ≤ Lε

2
(1 + t)δ,

if L is sufficiently large and ε is sufficiently small. Finally from (4.16) we get

N1(t) ≤ Cε(1 + t)−
1
2 + (1 + t)−

1
2

∫ t

0

Cε3L3(1 + s)2δ−2ds ≤ Lε

2
(1 + t)−

1
2 ,

if L is sufficiently large and ε is sufficiently small, since 0 < δ < 1
2 . Conse-

quently, we get a bound of N1(t) smaller than the assumption. Therefore the
solution can be extended by continuity argument. If we assume the maximal
time of existence T = T∗(< ∞), the above result contradicts the maximality
of T∗. We obtain the global existence of exponential wave equation for small
initial data.
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