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MULTIPLE PERIODIC SOLUTIONS OF p-LAPLACIAN
EQUATION WITH ONE-SIDE NAGUMO CONDITION

Jian Jun Zhang, Wen Bin Liu, Jin Bo Ni, and Tai Yong Chen

Abstract. In this paper, the existence and multiplicity of solution of
periodic solutions of p-Laplacian boundary value problem are studied by
using degree theory and upper and lower solutions method. Some known

results are improved.

1. Introduction

In this paper, we discuss the existence of multiple solutions of the following
p-Laplacian periodic boundary value problems:

(ϕp(u′))′ = f(t, u, u′), t ∈ [0, T ],(1)
u(0) = u(T ) , u′(0) = u′(T ),(2)

where ϕp(s) = |s|p−2s, p > 1. Obviously, if p = 2, Eq.(1) reduces to

(3) u′′ = f(t, u, u′), t ∈ [0, T ].

In recent years, by using degree theory and upper and lower solutions meth-
od, many important results relative to Eq.(1) with certain boundary conditions
have been obtained (see [2], [3], [5], [6], [7], [8], [9], [10] and references therein).
By using upper and lower solutions method, [11], [12], [13], discussed the mul-
tiplicity of the periodic boundary value problems (3), (2). But for p ̸= 2, the
results of existence of periodic solutions of (1), (2) were relatively few, since
the method of coincidence degree for linear operator cannot be applied directly
in this case.

Motivated by the above works, we apply the method of two pairs of lower
and upper solutions to discuss the solvability of the BVP (1), (2). Under the
condition that f(t, u, v) satisfies a one-side Nagumo condition, we obtain the
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existence of three solutions by using Leray-Schauder degree theory [1]. Our
results extend some known results ([11], [12], [13], [4]).

2. Background, notation and definitions

In the following, we shall use the spaces CT = {x : x ∈ C([0, T ], R), x(0) =
x(T )}, C1

T = {x : x ∈ C1([0, T ], R), x(0) = x(T ), x′(0) = x′(T )} and denote the
norm in CT by ∥ · ∥∞. For u(t) ∈ C1

T , define

∥u∥ = max{∥u∥∞, ∥u′∥∞}.
Let now H : CT −→ C([0, T ], R) be defined by

H(h)(t) =
∫ t

0
h(s)ds, h ∈ CT .

For fixed l(t) ∈ C([0, T ], R), let us define

Gl(a) :=
1
T

∫ T

0
ϕ−1

p (a + l(t))dt, ∀a ∈ R.

We have the following lemma.

Lemma 1 ([9]). The operator Gl has the following properties:
(A1) For any fixed l(t) ∈ C([0, T ], R) the equation

Gl(a) = 0

has a unique solution ã(l);
(A2) The operator ã : C([0, T ], R) → R is continuous and sends bounded sets

into bounded sets.

Let now a : CT −→ R be defined by
a(h) = ã(H(h)), h ∈ CT .

Then it is clear that a is a continuous function which sends bounded sets of
CT into bounded sets of R, and hence it is a completely continuous mapping.

Let us define the projectors P,Q respectively by

P : CT −→ CT , (Px)(t) = x(0),

Q : CT −→ CT , (Qx)(t) =
1
T

∫ T

0
x(s)ds,

and the operator K : CT → C1
T ,

K(h)(t) := H{ϕ−1
p [a((I − Q)h) + H((I − Q)h)]}(t).

And we introduce the concept of upper and lower solutions of (1), (2) and the
Nagumo condition we use forward.

Definition 1. A function α(t) ∈ C1[0, T ], ϕp(α′) ∈ C1[0, T ] is called a lower
solution of (1), (2), if

(ϕp(α′))′ ≥ f(t, α, α′), t ∈ [0, T ],(4)
α(0) = α(T ), α′(0) ≥ α′(T ).(5)

If the inequality (4) is strict, then α(t) is called a strict lower solution.
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Definition 2. A function β(t) ∈ C1[0, T ], ϕp(β′) ∈ C1[0, T ] is called an upper
solution of (1), (2), if

(ϕp(β′))′ ≤ f(t, β, β′), t ∈ [0, T ],(6)
β(0) = β(T ), β′(0) ≤ β′(T ).(7)

If the inequality (6) is strict, then β(t) is called a strict upper solution.

Definition 3. Given a subset E ∈ [0, T ] × R2, a continuous function f :
[0, T ] × R2 −→ R is said to satisfy one-side Nagumo condition in E, if there
exists φ ∈ C(R+, [k, +∞)), with k > 0, such that

f(t, u, v) ≤ φ(|v|)(1 + |v|), ∀(t, u, v) ∈ E,

and ∫ +∞

1

1
φ(ϕq(s))

ds = ∞,

where 1
p + 1

q = 1.

3. Existence results

Theorem 1. Assume that f : [0, T ] × R2 −→ R is continuous and
(H1) there exist an upper solution β(t) and a lower solution α(t) of BVP

(1), (2) such that α(t) ≤ β(t) for t ∈ [0, T ];
(H2) f(t, u, v) satisfies one-sided Nagumo condition in E, where

E = {(t, u, v) ∈ [0, T ] × R2 : α(t) ≤ u ≤ β(t)}.
Then there exists a solution u(t) of BVP (1), (2) satisfying α(t) ≤ u(t) ≤
β(t) for t ∈ [0, T ].

Remark 1. It is easy to see that the conditions in [4] are greater than the
conditions of Theorem 1.

In order to prove the Theorem 1, we consider the auxiliary boundary value
problem

(ϕp(u))′ = λf(t, u, u′), λ ∈ (0, 1),(8)
u(0) = u(T ), u′(0) = u′(T ).(9)

Lemma 2 ([9]). Let Ω ⊂ C1[0, T ] be an open bounded set. Assume that
(B1) the problem (8), (9) has no solution on ∂Ω for 0 < λ < 1;
(B2) the equation

F (s) :=
1
T

∫ T

0

f(t, s, 0)dt = 0

has no solution on ∂Ω ∩ R;
(B3) the Brouwer degree

degB(F,Ω ∩ R, 0) ̸= 0.
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Then the problem (1), (2) has a solution in Ω.

Proof of Theorem 1. For (t, u, v) ∈ [0, T ] × R2 define

f̄(t, u, v) =

 f(t, β(t), v) + u − β(t) for u > β(t),
f(t, u, v) for α(t) ≤ u ≤ β(t),
f(t, α(t), v) + u − α(t) for u < α(t).

(10)

The modified problem corresponding to (1), (2) is

(ϕp(u′))′ = f̄(t, u, u′), t ∈ [0, T ],(11)
u(0) = u(T ), u′(0) = u′(T ).(12)

In order to use Lemma 2, we consider the homotopy problem of BVP (11), (12)

(ϕp(u′))′ = λf̄(t, u, u′), λ ∈ (0, 1),(13)
u(0) = u(T ), u′(0) = u′(T ).(14)

First, we can claim that there exists a constant M1 > 0 such that ∥u∥∞ <
M1, λ ∈ (0, 1), where u(t) is a possible solution of BVP (13), (14), and M1 is
large enough such that

f(t, β(t), 0) + M1 − β(t) > 0, M1 > β(t) for t ∈ [0, T ],(15)
f(t, α(t), 0) − M1 − α(t) < 0, −M1 < α(t) for t ∈ [0, T ].(16)

Otherwise, there exists a point t0 ∈ [0, T ) such that u(t0) = mint∈[0,T ] u(t) ≤
−M1 or u(t0) = maxt∈[0,T ] u(t) ≥ M1. Without loss of generality, assume that
u(t0) = maxt∈[0,T ] u(t) ≥ M1. There are two cases as following:

Case 1. If t0 ∈ (0, T ), then u′(t0) = 0 and

(ϕp(u′(t0)))′ = λ(f(t0, β(t0), 0) + u(t0) − β(t0))
≥ λ(f(t0, β(t0), 0) + M1 − β(t0)) > 0.

So, there exists a constant δ > 0 such that (ϕp(u′(t)))′ > 0 for t ∈ (t0, t0 + δ).
This implies that ϕp(u′(t)) is increasing on (t0, t0 + δ). Thus

ϕp(u′(t)) > ϕp(u′(t0)) = ϕp(0) = 0, t ∈ (t0, t0 + δ),

which shows u′(t) > 0, t ∈ (t0, t0 + δ) from the monotonicity of ϕp. Namely,
u(t) is increasing on (t0, t0 + δ), contradicting u(t0) = maxt∈[0,1] u(t).

Case 2. If t0 = 0, then

u′(0) ≤ 0, u′(T ) ≥ 0.

From (14), we know that u′(0) = 0. A similar argument concludes a contradic-
tion with u(0) = maxt∈[0,1] u(t).

Second, we shall prove that there exists M2 > 0 such that ∥u′∥∞ ≤ M2.
Noting the definition of f̄ , the condition (H2) implies that

(ϕp(u′(t))′ ≤ φ(|u′|)(1 + |u′|) + 2M1, t ∈ [0, T ].(17)

From u(0) = u(T ), u′(0) = u′(T ), we can find t0 ∈ [0, T ) such that u′(t0) = 0.
Without loss of generality, we assume that t0 ∈ (0, T ).



MULTIPLE PERIODIC SOLUTIONS OF p-LAPLACIAN EQUATION 1553

By the definition of Nagumo condition, it follows that there exist M2,M3 ∈
(1,∞) with M3 < M2, such that∫ ϕp(M3)

1

1
φ(ϕq(s))

ds = K > 2M1(2 + T ),(18) ∫ ϕp(M2)

1

1
φ(ϕq(s))

ds > K + 2M1(2 + T ),(19)

where K is a positive constant.
Suppose that there exists t1 ∈ (t0, T ] such that

u′(t1) = max{u′(t) : t ∈ [t0, T ]} = c1 > 1.

We can find µ ∈ [t0, t1] such that u′(t) > 1, t ∈ (µ, t1], u′(µ) = 1.
Integrating (17) over [µ, t1], we get∫ t1

µ

(ϕp(u′(t)))′

φ(u′)
dt ≤

∫ t1

µ

(1 + u′ +
2M1

φ(u′)
)dt

≤
∫ t1

µ

(2u′ + 2M1)dt ≤ 2M1(2 + T ).

Let s = ϕp(u′(t)), we have∫ ϕp(c1)

1

1
φ(ϕq(s))

ds ≤ 2M1(2 + T ).

By (18), we know that ϕp(c1) < ϕp(M3). Therefore u′(t) < M3, t ∈ [t0, T ],
u′(0) < M3.

Further suppose that there exists t2 ∈ [0, t0) such that

u′(t2) = max{u′(t) : t ∈ [0, t0]} = c2 > M3.

Then we can find ν ∈ [0, t2] such that u′(t) > M3, t ∈ (ν, t2], u′(ν) = M3.
Integrating (17) over [ν, t2], we get∫ ϕp(c2)

ϕp(M3)

1
φ(ϕq(s))

ds ≤ 2M1(2 + T ).

Combining with (18), we have∫ ϕp(c2)

1

1
φ(ϕq(s))

ds ≤ K + 2M1(2 + T ).

By (19), we know that ϕp(c2) < ϕp(M2). Therefore u′(t) < M2, t ∈ [0, t0].
Thus we get

u′(t) < M2, t ∈ [0, T ].(20)

Suppose that there exists t3 ∈ [0, t0) such that

u′(t3) = min{u′(t) : t ∈ [0, t0]} = −c3 < −1.
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A similar argument can concludes that c3 < M3. So

u′(t) > −M3, t ∈ [0, t0], u′(T ) > −M3.

Suppose that there exists t4 ∈ [t0, T ] such that

u′(t4) = min{u′(t) : t ∈ [t0, T ]} = −c4 < −M3.

A similar argument can concludes that c4 < M2. So

u′(t) > −M2 , t ∈ [t0, T ].

Therefore we have

u′(t) > −M2, t ∈ [0, T ].

Hence

∥u′∥∞ ≤ M2.

Next, we shall prove that the BVP (11), (12) has at least one solution by
using Lemma 2.

Set

Ω1 = {u(t) ∈ C1
T : ∥u∥ < M0},

where M0 = max{M1, M2} + 1.
Obviously, the hypothesis (B1) of Lemma 2 is satisfied.
By (15), (16), we know that

f̄(t,−M0, 0) < 0, f̄(t,M0, 0) > 0.

Applying the monotonicity of ϕp, we immediately get

F (−M0) =
1
T

∫ T

0
f̄(t,−M0, 0)dt < 0,

F (M0) =
1
T

∫ T

0
f̄(t,M0, 0)dt > 0.

Thus, the hypothesis (B2) of Lemma 2 is true.
By using the property of Brouwer degree, we see that

degB(F, Ω1 ∩ R, 0) = 1.

Hence, the hypothesis (B3) of Lemma 2 is also satisfied. By Lemma 2, it can
be shown that the BVP (11), (12) has one solution u(t).

Finally, we can claim that α(t) ≤ u(t) ≤ β(t) for t ∈ [0, T ], where u(t) is
a solution of BVP (11), (12). Otherwise, there exists a point t1 ∈ [0, T ) such
that u(t1) < α(t1) or u(t1) > β(t1). Without loss of generality, assume that
u(t1) > β(t1).

Let x(t) = u(t) − β(t). Then there exists a point t2 ∈ [0, T ) such that
x(t2) = maxt∈[0,T ] x(t) > 0. There are two cases as following:
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Case 1. If t2 ∈ (0, T ), then x′(t2) = 0. For the definition of the upper
solution, thus

(ϕp(u′(t2)) − ϕp(β′(t2)))′ ≥ f̄(t2, u(t2), u′(t2)) − f(t2, β(t2), β′(t2))
= f(t2, β(t2), u′(t2)) + u(t2) − β(t2)

−f(t2, β(t2), β′(t2))
= u(t2) − β(t2) = x(t2) > 0.

So, there exists a constant ε > 0 such that (ϕp(u′(t)) − ϕp(β′(t)))′ > 0 for t ∈
(t2, t2 + ε). This implies that ϕp(u′(t)) − ϕp(β′(t)) is increasing on (t2, t2 + ε).
Thus

ϕp(u′(t)) − ϕp(β′(t)) > ϕp(u′(t2)) − ϕp(β′(t2)) = 0, t ∈ (t2, t2 + ε),

which shows u′(t) > β′(t), t ∈ (t2, t2+ε) from the monotonicity of ϕp. Namely,
x(t) is increasing on (t2, t2 + ε), contradicting x(t2) = maxt∈[0,T ] x(t).

Case 2. If t2 = 0, then x′(0) = 0 from x(0) = x(T ) = maxt∈[0,T ] x(t). A
similar argument concludes a contradiction with x(0) = maxt∈[0,T ] x(t).

From (10), we get that u(t) is a solution of BVP (1), (2) satisfying α(t) ≤
u(t) ≤ β(t) for t ∈ [0, 1].

This completes the proof of Theorem 1. ¤

Corollary 1. Assume that f : [0, T ] × R2 −→ R is continuous and
(H ′

1) there exist two constants r1 ≤ r2, such that

f(t, r1, 0) ≤ 0 ≤ f(t, r2, 0) ∀t ∈ [0, T ];

(H ′
2) f(t, u, v) satisfies one-side Nagumo condition in E, where

E = {(t, u, v) ∈ [0, T ] × R2 : r1 ≤ u ≤ r2}.
Then there exists a solution u(t) of BVP (1), (2), satisfying r1 ≤ u(t) ≤
r2 for t ∈ [0, T ].

4. Multiplicity results

In this section, we shall apply upper and lower solutions method and degree
theory to get the following multiplicity result.

Theorem 2. Assume that f : [0, T ] × R2 −→ R is continuous and
(H3) there exist strict upper solutions β1(t), β2(t) and strict lower solutions

α1(t), α2(t) of BVP (1), (2), such that α1(t) < β1(t) < α2(t) < β2(t)
for t ∈ [0, T ].

(H4) f(t, u, v) satisfies one-side Nagumo condition in E, where

E = {(t, u, v) ∈ [0, T ] × R2 : α1(t) ≤ u ≤ β2(t)}.
Then there exist three solutions u1(t), u2(t), u3(t) of BVP (1), (2) satisfying
α1(t) < u1(t) < β1(t), α2(t) < u2(t) < β2(t) for t ∈ [0, T ] and u3(t) 
 β1(t),
u3(t) � α2(t) for t ∈ [0, T ].
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In order to prove the Theorem 2, we first prove the following lemma.
Define Lp : D(Lp) ⊂ C1

T −→ L1([0, T ], R), by

(Lpu)(t) = (ϕp(u′(t)))′,

where D(Lp) = {u : u ∈ C1[0, T ], ϕp(u) ∈ C1[0, T ], u(0) = u(T ), u′(0) = u′(T )}
and Gf (u, λ) : domGf ⊂ C1

T × [0, 1] −→ L1([0, T ], R), by

Gf (u, λ) = Pu + QNf (u) + (K ◦ [λ(I − Q)Nf ])(u),

where (Nfu)(t) = f(t, u, u′).

Lemma 3. Assume that f : [0, T ] × R2 −→ R is continuous and
(H5) there exist a strict upper solution β(t) and a strict lower solution α(t)

of BVP (1), (2), such that α(t) < β(t) for t ∈ [0, T ];
(H6) f(t, u, v) satisfies one-side Nagumo condition in E, where

E = {(t, u, v) ∈ [0, T ] × R2 : α(t) ≤ u ≤ β(t)}.
Then there exists a constant Mα,β (only depending on α, β), such that

DL−S(I − Gf (·, 1), Ω, θ) = −1, ∀R > Mα,β ,

where Ω = {u : u ∈ D(Gf (·, 1)), α(t) < u(t) < β(t), ∀t ∈ [0, T ], ∥u′∥∞ < R}.

Proof. It follows from [9] that the operator Gf̄ (u, λ) is compact and continuous
and BVP (13), (14) is equivalent to u = Gf̄ (u, λ), λ ∈ (0, 1).

Using the similar argument in the proof of Theorem 1, there is a constant
Mα,β (only depending on α, β), such that

(21) ∥u∥∞ < Mα,β , ∥u′∥∞ < Mα,β ,

(22) −Mα,β < α(t), β(t) < Mα,β , ∀t ∈ [0, T ],

(23) f̄(t,−Mα,β , 0) < 0, f̄(t, Mα,β , 0) > 0, ∀t ∈ [0, T ],

where u(t) is a possible solution of u = Gf̄ (u, λ), λ ∈ (0, 1].
Specially,

(24) α(t) < u(t) < β(t), ∀t ∈ [0, T ],

where u(t) is a possible solution of u = Gf̄ (u, 1).
Set

ΩR = {u : u ∈ D(Gf̄ ), ∥u∥ < R}, R > Mα,β .

From (23), we can get that u ̸= Gf̄ (u, 0), u ∈ ∂ΩR.
Thus

u ̸= Gf̄ (u, λ), λ ∈ [0, 1], u ∈ ∂ΩR.

By the homotopy invariance property, we get that

DL−S(I − Gf̄ (·, 1), ΩR, θ) = DL−S(I − Gf̄ (·, 0), ΩR, θ),

= degB(I − Gf̄ (·, 0), ΩR ∩ R, 0),

= degB(−F̄ , ΩR ∩ R, 0),
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where F̄ defined by

F̄ (a) :=
1
T

∫ T

0

f̄(τ, a, 0)dτ.

By (23), we know that

f̄(t,−R, 0) < 0, f̄(t, R, 0) > 0, ∀t ∈ [0, T ].

Applying the monotonicity of ϕp, we immediately get

F̄ (−R) =
1
T

∫ T

0
f̄(τ,−R, 0)dτ < 0,

F̄ (R) =
1
T

∫ T

0
f̄(τ,R, 0)dτ > 0.

By using the property of Brouwer degree, we see that

degB(−F̄ , ΩR ∩ R, 0) = −1.

Thus

DL−S(I − Gf̄ (·, 1), ΩR, θ) = −1.

By (24), we know that

DL−S(I − Gf (·, 1),Ω, θ) = −1.

This completes the proof of Lemma 3. ¤
Proof of Theorem 2. By assumption H3 and Lemma 3, there exists a constant
R, such that

DL−S(I − Gf (·, 1), Ω1, θ) = DL−S(I − Gf (·, 1), Ω2, θ)

= DL−S(I − Gf (·, 1), Ω3, θ) = −1,

where
Ω1 = {u : u ∈ D(Gf ), α1(t) < u(t) < β1(t),∀t ∈ [0, T ], ∥u′∥∞ < R},
Ω2 = {u : u ∈ D(Gf ), α2(t) < u(t) < β2(t),∀t ∈ [0, T ], ∥u′∥∞ < R},
Ω3 = {u : u ∈ D(Gf ), α1(t) < u(t) < β2(t),∀t ∈ [0, T ], ∥u′∥∞ < R}.

Because Ω1, Ω2 and Ω3 \ Ω1 ∪ Ω2 are mutually disjoint and Ω3 = Ω1 ∪ Ω2 ∪
Ω3 \ Ω1 ∪ Ω2 , we can get

DL−S(I − Gf (·, 1), Ω3 \ Ω1 ∪ Ω2, θ)

= DL−S(I − Gf (·, 1), Ω3, θ)

− DL−S(I − Gf (·, 1),Ω1, θ) − DL−S(I − Gf (·, 1), Ω2, θ)
= 1 ̸= 0.

The above discussion implies that the operator equation u = Gf (u, 1), that is
BVP (1), (2) have at least one solution in the set Ω1,Ω2 and Ω3 \ Ω1 ∪ Ω2,
respectively. That is, there exist three solutions ui(t), i = 1, 2, 3, such that

α1(t) < u1(t) < β1(t), ∀ t ∈ [0, T ],



1558 JIAN JUN ZHANG, WEN BIN LIU, JIN BO NI, AND TAI YONG CHEN

α2(t) < u2(t) < β2(t), ∀ t ∈ [0, T ],
u3(t) 
 β1(t), u3(t) � α2(t), ∀t ∈ [0, T ].

This completes the proof of Theorem 2. ¤
Corollary 2. Assume that f : [0, T ] × R2 −→ R is continuous and

(H ′
3) there exist 2m constants ci, di, i = 1, 2, . . . ,m, with

c1 < d1 < c2 < d2 < · · · < cm < dm,

such that

f(t, ci, 0) < 0 < f(t, di, 0), i = 1, 2, . . . ,m, ∀t ∈ [0, T ];

(H ′
4) f(t, u, v) satisfies one-side Nagumo condition in E, where

E = {(t, u, v) ∈ [0, 1] × R2 : c1 ≤ u ≤ dm}.
Then there exist 2m − 1 solutions ui(t), i = 1, 2, . . . , 2m − 1 of BVP (1), (2).

Example. Consider the following boundary value problem

(ϕp(u′))′ = f(t, u, u′), t ∈ [0, T ],(25)
u(0) = u(T ) , u′(0) = u′(T ),(26)

where f(t, u, u′) = sin(u)|u|m + ur(u′)p + (u′)k − 1 and m, r, k are positive
constants with k ≤ p.

Obviously, f(t, u, u′) satisfies one-side Nagumo condition and there are infi-
nite constants (2n ± 1

2 )π, n ∈ Z, such that

f(t, (2n − 1
2
)π, 0) < 0 < f(t, (2n +

1
2
)π, 0), t ∈ [0, T ].

By using Corollary 2, we conclude that BVP (25), (26) exists infinite solutions.

Acknowledgements. The authors would like to thank the referee for his (or
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