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AN OPTIMAL CONTROL FOR THE WAVE 
EQUATION WITH A LOCALIZED NONLINEAR 

DISSIPATION

Yong Han Kang

Abstract. We consider the problem of an optimal control of the 
wave equation with a localized nonlinear dissipation. An optimal 
control is used to bring the state solutions close to a desired profile 
under a quadratic cost of control. We establish the existence of 
solutions of the underlying initial boundary value problem and 
of an optimal control that minimizes the cost functional. We 
derive an optimality system by formally differentiating the cost 
functional with respect to the control and evaluating the result at 
an optimal control.

1. Introduction

In this paper we consider the optimal control problem for the wave 

equations with a localized nonlinear dissipation;

(1.1) utt — Au + a(x)ut = f in Qt 三 Q x (0,T],

u(x, 0) = U0(x), ut(x, 0) = ui(x) in Q,

u(x,t) = 0 on dQ x [0,T],

where f : Qt — R, u°,ui : Q — R are given and a : Q — R, u :

Qt — R are the unknown, u = u(x, t). We set for xo e RN,

r(xo) = {x e dQ : (x — xo) • v(x) > 0}
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where v(x) denotes the outward unit normal of the boundary dQ at 

x e dQ and let

力=(UxEr(x0)B(x)) n Q

where B^(x) = {y e RN : ||x — y|| < 6 for some 6 > 0}. Given the 

control set:

(1.2) Um = {a e L^(u) : M > a > cQ for some M, cQ > 0}.

In here, the corresponding state variable u = u(a) satisfies the state 

equation (1.1). We take as our objective functional:

(1.3) J (a) = ! / / (u(a) — Zd、j2dxdt + — / a2(x)dx

2 J0 儿 2 J3

where Zd e L2(Qt) is a given target function and a e L^(Q), a(x) > 0.

We can find a* e Um such that

J(a*) = min J (a).
aeUM

For the background in control of PDEs, see Liang ([5]). Nakao 

([6],[7]) developed decay of solutions of wave equation with a local de­

generate dissipation. Bradley and Lenhart ([3]) treated A2 type of bi­

linear control for the Kirchhoff plate equation. Park et al. ([8],[9],[10]) 

treated for optimal control of parameters and operators.

The goal of this work is to obtain an unique optimal control in 

terms of the solution to the optimal system, which will consist of the 

original wave problem coupled with an adjoint problem. In Section2, 

we show the well-posedness of our state problem in an appropriate 

solution space. Then we show the existence of an optimal control by 

a minimizing sequence argument. In Section3, the optimality systems 

is derived by differentiating the objective functional with respect to 

the control. The solution map a — u(a) is differentiated which is used 

in the differentiation of the objective functional. Then for sufficiently 

small time T, under some boundedness assumption, we prove unique­

ness of the optimal systems, which characterizes the unique optimal 

control.
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2. Existence of an Optimal Control

The following assumptions are made throughout this part : Q is 

bounded domain in RN and dQ is C2 smooth. Qt = Q x (0,T]. 

f, ft 6 L2(Qt). a(x) e L8(Q),a(x) = 0 in Q —力,a(x) > 0 in 力 and 

0 < a(x) < M*, M < M* < oo, M* is a constant.

We present our definition of weak solution.

Definition. Given a e L^(Q) and u0 e Hj(Q),ui e L2(Q), u e 
C(0,T; H1(Q)) with ut e C(0,T; L2(Q)),utt e C(0,T; H-1(q)) is a 
weak solution of the problem (1.1):

，一、,、/•',,、产 一 L ,、产............................

(2.1) (a) 〈utt,©)dt + (Vu, ▽©)dt + 〈a(x)ut,©)dt
00 0

=f f,罚dt for any © e H1(Q) and a.e. 0 < t < T;

0

(b) u(x, 0) = U0(x);

(c) ut(x, 0) = ui(x);

where〈,〉denotes the duality pairing of H-1(Q) and H1(Q).

For notational convenience, we set

H = H1(Q) x L2(Q), 

u = u(a) ,u = (u, ut).

Lemma 2.1. (Well-Posedness)(See [11]) For u° = (u°,ui) e H and 
a e L8(C), the problem (1.1) has a unique weak s이ution u.

Proof. We write (1.1) in the semigroup formulation

d ( u ) = ( 0 I \ ( u \ + ( 0

dt\ut) \ A 0 丿' ut 丿 \ — aut + f31， 、 I 丿 \ 丿 、 I 丿 \ (- 1 tf

u(0)=u0 = (u0).

)(2.2)
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Define the operator A : [H2(Q) A H1(Q)] x H1(Q) — H by

Au=(* o)u.

Its domain, D(A) = [H2(Q) A H1 (Q)] x H1 (Q) is 시early dense in H.

Formulation (2.2) may be written as

Note that A is skew adjoint (See [1]), i.e. A* = —A

(2.3)
d
刀 u(t) = Au(t) + Ba(u)(t) 
dt

where

Ba(히 = ( —/ + f ) .

A*u=( —△負u

and thus D(A) = D(A*). Thus we have that A generates a unitary 

group on H (See [1]). Motivated by the formulation (2.3), we seek a 

solution of the form:

U(t) = eAtuo + / eA(t-T)Ba(U)(.,T)dr

Jo

We will prove that the map Ta,

Tau(t) = eAtU()+ / eA(t-T)Ba(U)(・,r)dr 

Jo

has a unique fixed point in C([0, To]； H).

Stepl. We will prove that, if T is small enough, there exists a 

unique fixed point such that

Ta(u(t))= u(t) in C([0,T]; H).

To use the contraction mapping theorem, we need to show that Ta is 

bounded and contractive.



An optimal control for the wave equation 175

Boundedness:

(2.4) ||Ta 지1C ([0,T0];H)

冬 y지 C([0,T0];H) + sup 
0<t<T0

/ t|l 

0

eA(t~T) Ba (U)«,t )||wdr

冬 ||eAt지 C([0,To];H) + sup 
0<t<T0

||eA(t-T )[a(-)UT (-,T )
/t

0

+ f (-,T 川1L2(Q)dT

since A generates a unitary group and that ||eAt|| = 1, here || - || 

denoting the operator norm. Since ||a||^ < M*, we obtain

(2.5) 皿히 C ([0,To];H)

< ||t^0||H + "7和히C([0,To];H) + W|f||C([0,To];H)

and hence Ta is bounded.

Contractivity:

Similarly, for any v, u e C([O,T0|; H),

||TaV - TaU||c([0,T0];H) < M*T°||V - U||c([0,T0];H).

By choosing T0 < 1/M*, we have Ta is contractive for t < T» Thus, 

by the contraction mapping theorem we have the existence of a unique 

fixed point on C([O,T0]; H).

Step2. Extend the above result to a solution on [TR 2T0] by select­

ing a new initial datum as Ur = U(T^) e H. By a second contraction 

argument, we have a unique solution on C([T0, 2T0|; H). Repeating the 

process a finite number of time, we obtain the existence of a unique 

weak solution to (1.1), with U e C([0,T];H). □

Lemma 2.2. (Regularity) (See [11]). Assume that Q is a bounded 

domain, dQ is C2 smooth, a e L^(Q), U0 e H2(Q), Ui e H1 (Q) 

and ft e L2(Qt). Then the weak s이ution U = U(a) of (1.1) satisfies 

U e C(0,T; H2(Q)),Ut e C(0,T; H 1(Q)) and Utt e C(0,T; L2(Q)).

Lemma 2.3. (A priori Estimate)(See, [2]). If a e Um , U e H2(Q), 
Ui e H1(Q), f e L2(Qt) , dQ is C2, then the weak solution u = U(a) 
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of (1.1) satisfies

suP (血(圳1 H1(Q) + llut(t)llL2(Q)) + 丨|u시1L2([0,T];H-i(Q)) 
0<t<T 0

冬 C(||/||L2(0,T;L2(Q)) + ||u0||Hl(Q) + ||u1||L2(Q))

where C is a constant which depends only on Q and T.

Proof. There exist sequence {u°n} C H2(Q), {uin} C H1(Q) and 

{an} C Um such that

strongly in H1(Q),

strongly in L2(Q), 

weakly in L2(力)C L2(Q).

U0n — U0

Uin — U1

an — a

Denote by un the weak solution of (1.1) corresponding to the ini­

tial datum U0n,Uin with control an then Un satisfies the regularity of 

Lemma 2.2. Multiplying the PDE (1.1) by (un)t, denoted by (un)t, 

and integrating over Qt = Q x (0, t] with 0 < t < T, we obtain

0 = / [(un)rr (un)T - (△Un)(un)T + an((un)r) - f (un)r ~\dxd>T 

J Qt

1d 2 2 2
= ^~((un)r)2 + |^u시2) + an((un))2 - /(un)r]dxdT

Lit 2 dT

First, we have

/ .[((un)"2 + |Vun|2)]dx

=[(uin)2 + |Vu0n|2]dx + 2 / [-an((un)t)2 + /(un)T]dxdT 

J Q J Qt

(2.6) < ||u1n||L2(Q) +〔〔▽u0n||&(Q) + ||/||L2(qt)

+ (1 + M川^仍/膈臨)

< (||u1n||L2(Q) + ||Vu0n||L2(Q) + ||/||L2(qt))

+ (1 + M) f [((un)r)2 +〔▽un|2)]dxdT.

Qt

Using Gronwall’s inequality, we obtain
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(2.7) / [((un)t)2 + |V«„|2)]dx

< [1 + (1 + M)Te(1+M頂]

X(||u1n||L2(Q) +〔〔▽u0n||&" + 11/||L2(qt ))•

Using Poincare’s Inequality, we obtain

(2.8) / ｛朴[((Un)t)2 + (Un)2)]dx

< C1 [ [((Un)T)2 + (Un)2)]dx dr

J Qt

+ C1(||u1n ||2^2 (Q) + ||Vu0n||L2(Q) + \\f ||l2(qt))

where C1 is independent of un.

Combining (2.7), (2.8) and letting n — x, we get at time t

(2.9) ||Ut(t)||L2(Q)+ ||Vu(t)||L2(Q)+ ||u(t)||L2(Q)

< C2(||u1||L2(Q)+ ||VU0||L2(Q)+ \\f\\l2(Qt))

where C2 depends only on Q,M and T.

Taking the supremum, gives

(2.10) sup [||ut(t)||L2(Q) + ||u(t)||H 1(Q)]
0<t<T ° 7

< C2(||u1||L2(Q) + ||u0||H(i(Q) + \\f\\12(0,T;L2(Q))).

Using the state equation, we obtain

||utt||L2([0,T]；H-1(Q)) < C3 / (W/(t)||L2(Q) + ||ut||H(1(Q))dt 

0

< C4T(||u1||L2(q) + ||u0||H1(Q) + ||f\\L2(0,T;L2(Q)))，

where C3, C4 are constants independent of a. 口

We need to get higher order regularity of the weak solution of prob­

lem (1.1) in order to solve optimal problem . So, using Galerkin ap­

proximation method we obtain the higher order regularity of the weak 

solution.
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Lemma 2.4. (Improved Regularity)(See, [2]). Assume that u is the 

weak s이ution of problem (1.1), if a = a(x) E Um, uo E H2(Q),ux e 

H0(Q),f e L2(Qt),ft E L2(Qt), then ut E L^(0,T; H 1(Q)),Utt E 

L^(0, T; L2(Q)),uttt E L2(0, T; H-1(Q)) and we have the estimate:

ess sup (Hu(t)||H2(Q) + Hut(t)||Hi(Q) + Hutt(t)||L2(Q)) 

0<t<T 0

(2.瑚 +|編山£2([0,7];丑 T(Q))

冬 C(||/||H1(0,T;L2(Q)) + ||u0||H2(Q) + ||u1||H(1(Q))

with C depending only on Q,T,E0, and M.

Proof. Construct a sequence of approximations by selecting smooth 

functions。螺 =a^(x), (k = 1, 2,...) such that

{ak註=i is a basis of Hj(Q),

{以}E=i is an orthonormal basis of L2(Q),

and {ak} are eigenfunctions for —△ on Hj(Q) corresponding to the 

eigenvalue 入k. For integer m, write

m
(2.12) um(t)三 £ dm(t)ak(x)

k=1

where dm(t) satisfy

(2.13) dm(0) = (u°(x),ak )l2 ,dk^(0) = (ui(x),ak、)l ,k = 1, 2, ...,m 

and

(2.14) (umtt(i),ak〉+〈▽um(t), Vak〉+〈a(x)umt(t),ak)= (/(t),ak〉.

Using the orthogonality of {ak} in L2(Q) and substituting the sum 

for um from (2.12) into (2.14), Eq.(2.14) becomes a system of ordinary 

differential equation (ODE)

(2.15)
mm

dmt(t) + E〈Val，Vak〉dm(t) + E〈a(x)al ,ak〉dm (t) =〈/(t),ak〉， 

l=1 l=1
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0 < t < T, k = 1,2,...,m with initial conditions (2.13). By 

standard existence theorem for ODE, there exists a unique absolutely 

continuous solution satisfying (2.13) and (2.14).

Note that each dm(t) has more regularity since the coefficients are 

time independent and ft 6 L2(Qt), and we will use d^Jt) G L2(0,T).

Step 1. In the proof of Lemma 2.3, we have already derived the 

bounds

(2.16) sup (||um(t)||Hi(Q) + ||umt(t)||L2(Q)) + ||umtt||L2(0,T;H-1(Q))
0<t<T 0

< C(||f||L2(0,T;L2(Q)) + ||u0||H(i(Q) + ||u1 \\l2(Q)).

Passing to limits as m = mi — x, we deduce

(2.17) sup (||u(t)||Hi(Q) + ||ut(t)||L2(Q)) + ||utt||L2(0,T;H-1(Q))
0<t<T 0

< C(||f\\l2(0,T;L2(Q)) + ||u0||Hi(Q) + ||u1||L2(Q)).

Step 2. Assume now the hypotheses of given initial conditions. 

Fix a positive integer m, and next differentiate the identity (2.14) 

with respect to t. Writing um := umt we obtain

(2.18) (Umtt(t),ak〉+〈▽Um(t), Kg〉+ (a(x')Umt(t'),ak)= (ft(t),ak〉.

Multiplying (2.18) by d^^t(t) and adding for k = 1, 2, •, •, -,m, we dis­

cover

(2.19) 〈Umtt(t),Umt(t))+ (VUm(t), VUmt(t))

+〈a(x)Umt(t),Umt(t))=〈ft(t),Umt(t)).

Rewrite the above equality as

1d(2.20) - d (||Umt(t)||L2(Q) + ||VUm(t)||L2 (q))
2 dt

+〈a(x)Umt(t),Umt(t))=〈ft(t),Umt(t)).

Using a(x) > % > 0 and integrating to time t, we obtain
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(2.21)/  (Umt(t))2dx + / |VUm(t)|2dx + % / / (ums(s))2dxds

Jq Jq Jo Jq
1t

< — / I ( f (x s))2dxds + / (U + (0))2dx + /〔▽ U (0) 12dx< / / f sIx, s丿丿(人x(4b + / IUmt\ u丿丿(人x + / I v Um\u丿 I (人x.
&0 Jo Jq Jq Jq

Thus we have 

(2.22) sup ( [ (umt(t))2dx + [ |▽Um(t)|2dx)

0<t<T Jq Jq

+% / / (ums(s))2dxds

< C(%)( / / (ft(x,t))2dxdt + / (Umt(0))2dx

J 0 J q J q

+ [ |VUm(0)|시x).

Jq

Using the properties of a^, we have

(2.23)
r r
/ (U ,(0))2dx + / |^U (0)|2dx (Umt(U)) ctx + | Um(U)|

< C2(||u0||H2(Q) + ||U1||H1(Q)).

Combining (2.22)-(2.23) and in시uding Umt = Um, we conclude that

(2.24) sup (||Umtt(t)||L2(Q) +〔▽Umt(t)||L2(Q)) + 皿시&如厂圍❶)) 
0<t<T

< C3(||이1L2(0,T;L2(Q)) + ||u0||H2(Q) + ||U1||H1(Q)).

oo, we deduce

sup (||Utt(t)||L2(Q) + ||^Ut(t)||L2(Q)) + 卄이施⑭"2(Q))

0<t<T

< C3(||/t||L2(0,T;L2(q)) + ||u0||H2(Q) + ||u1||H1(Q)).
3. Now

Passing to limits as m = mi — 

(2.25)

Step
(2.26) ( - △um ,ak) = (/ - 이 mtt - aumt ,ak) (k =L 2, •…, m) -
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Recall we are taking {ak)} to be the complete collection of eigen­

functions for —△ on H1(Q). Multiplying (2.26) by 入kdT(t) and sum­

ming k = 1, 2, •••,m, we deduce

(2.27) ( — △um, — △um) = (/ — umtt — aumt, — △um) (k = 1, 2,…, m).

Using a(x) < M,we obtain

(2.28) ^△umHL2(Q) < C4(||f||l2(q)+ ||umtt||L2(Q) + l|u시1L2(Q)).

Since △um = 0 on dQ and u e H2(Q) A H1 (Q) (see, [2]),we employ 

the inequality

(2.29) P||u||H2(Q) < ||△씨1L2(q)

Combining (2.28) and (2.29), we obtain

(2.30) ||um||H2(Q) < C5 (||f||L2(Q) + ||umtt||L2(Q) + 血시施⑴).

Thus we deduce from (2.16), (2.24) and (2.30) that

(2.31) sup (||um(t)||H 2(Q) + ||umt (圳膈(Q) + |"那)||*q))
0<t<T 0V 7

< C6(||/\\h 1(0,T;L2(Q)) + ||u0||H2(Q) + ||u1||H1(Q)).

Here we estimated ||um(0)||H2(Q) < 이|uo||h2(q).
Passing to limits as m = mi — x, we derived the same found for u.

Step 4. It remains to show uttt e L2(0, T; H-1(Q)). To do so, 

take v e H1(Q), with ||v||h 1(q) < 1, and write v := vi + V2 where 

v e span{ok}m=i and (v2, a^) = 0 (k = 1,2, ...,m). Since the functions 

{以找=1 are orthogonal in H1(Q), ||vi||Hi(q) < ||이1H1 (q) < L

Utilizing (2.14), we deduce for a.e. 0 < t < T that

(umttt, v1) + (— △umt,v1) + (aumtt,v1) = (ft,v1).

Then for a.e. 0 < t < T

〈umttt,v〉 = (umttt,v) = (umttt,v1)

=(ft,v1) + (△umt ,v1) — (aumtt,v1).

and
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(2.32) |〈umttt,v)| M C7 (||/t||L2(Q) +〔〔△‘S시|l2(Q) + ||um시|l2(Q))
since ||이1毋@)< 1.

Combining (2.30) and (2.30) we obtain

(2.33) ||umttt||H-1(Q) < C7(||/t||L2(Q) + ||^umt||L2(Q) + ||um시1 L2(Q))

< C7(||/\\h 1(0,T;L2(Q)) + ||u0||H2(Q) + ||u1||H1(Q)).

And also umttt is bounded in L2(0, T; H-1(Q)). Passing to limits as 

m = mi -^ to, we deduce that uttt E L2(0, T; H-1(Q)). Combining 

the estimates above yields the desired result. □

Now we obtain the existence of an optimal control.

Theorem 2.1. There exists an optimal control a* E Um which 

minimizes the objective functional J (a) for a E Um .

Proof. Let {an} C Um be a minimizing sequence such that

(2.34) lim J (an) = inf J (a).
n—8 gEUm

Denote un = u(an). By Lemma 2.4 we have

ess sup (||u(t)||H2(Q) + ||ut (圳1H1(Q) + ||utt (圳1L2(Q)) 

0<t<T 0

+ ||uttt||L2(0,T;HT(Q)) < C(||/Wh1 (0,T;L2(Q)) + ||u0||H2(Q) + ||u1||H1(Q))
On a subsequence, by weak compactness there exist u* in C([0,T]; H2(Q)) 

such that

un — u* weakly* in L^(0,T; H2(Q)),

(2.35) u； — u* weakly* in L^(0, T; Hj(Q)),

an — a* weakly in L2(力)and weakly in L2(Q), 

u； — u*t weakly in L2(0, T; L2(Q)).

Since H2(Q), Hj(Q) j L2(Q) are compact embedding, we have u；— 
u* strongly in L^(0, T; L2(Q)) and . By the definition of weak solution,
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we have

< 碣，© >=- [E 

丿Q

. ▽© + anu^ -冲x

for any © e H1(Q) and a.e. 0 < t < T. Since

U — U strongly in L2(Qr), 

a — a* weakly in L2(力)and L2(Q),

then

—u：a* weakly in L2(力 x [0,T]) and L2(Q x [0,T]).

Passing 

obtain

to the limit as n — x in the weak formulation of un, we

Thus u*

< u*t，© >= — I [▽u* • ▽© + a*u*© —抑']dx.
Jq

= u(a*) is the solution of state Eq.(1.1) with control a*. Since

J (a*) = :/ (u(a*) — Zd)2dxdt + ； / (a*)2(x)dx,

2 丿*(o,t) 2 R

using lower-semicontinuity of L2 norm with respect to weak conver­

gence, we have

J(a*) < lim 1 / (u(an) — Zd)2dxdt + lim ° /(an)2(x)dx

I" 2 九시0,T] I" 2

< lim inf J (an) = inf J (a).
m" aCUM

Finally, we conclude that a* is an optimal control. □

Remark (i) This problem is not related to the structure shape of 

domain Q; (ii) the dimension of domain Q C Rn are n = 2, 3, 4 and 

this problem is more generalized space than Boris and Lenhart([4]); 

(iii) optimal solution a* has nonlinear in 力 and linear property in Q —力 

and also only be include important information data in regional area 力.
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3. Characterization of the Optimal Control

We now derive the optimality system by differentiating the objec­

tive functional J (a) with respect to the control a. Since u = u(a) is 

involved in J (a), we must first prove the appropriate differentiability 

of the mapping

a — (u(a),ut(a)) = U(a).

Lemma 3.1. The mapping

a E Um — U(a) = (u(a),ut(a)) E L2(0,T; H), H = H2(Q) x H"Q)

is differentiable in the following sense:

u(a + £l) — u(a) "

£

weakly in L2(0, T; H) as £ — 0, for any a satisfying a + £l E Um for 
一 77 1 1 一 t t 7X t 7 / I I \ r 9 /r\ m n~/\ ♦ 7
£ small and l E Um. Moreover 明 = (明,砺)in L2(0, T; H) is a weak 

solution of the following problem:

(3.1) 明tt = △明—a明t — lut, in Qr ,

明=0, on dQ x [0,T],

明(0)=明t(0) = 0, in x E Q

where u = u(a).

Proof. Denote u£ = u(a + £l) and u = u(a), then (u£ — u)/£ is a 

weak solution of

fu£-u\ — A fu£-u\ ^fu£-u\ ",E • O
(^^)tt — 3^-) — a(^厂)t — lut in QT

正-으 = 0 in dQ x [0,T] ,

正-으 = 0 in t = 0,x E Q ,

('으-)t = 0 in t = 0,x E Q .

Using Lemma2.4, we get
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ess sup [||(二으)(t)||H2(Q) + ||(으m)t(圳浦Q)

0<t<T g g 0

+ ||( 쓰三1으 )tt(t)||L2(Q)]

J C||lu£t||L2(0,T;L2(Q))

< CT||1||l8 sup ||u")||l2(q)

0<t<T

< C1 T||l||L8 sup ||妇(t)||H1(Q)
0<t<T 0

< C2T||l||『

where C2 depend on the 1肾 bound on l, but it is independent of g.

Hence on a subsequence, by weak compactness, we have

u,£ _ u _
~二---- > © weakly* in L",T; H2(Q)),

Ut Ut — ©t weakly* in L^(0, T; H1(Q)) and strongly in L2(Q),

g

and

U——쓰 — ©tt weakly* in L^(0, T; L2(Q)).

By the definition of weak solution, we have

,｛卢 _ U+ [ f / U£ — U \ , 7 f / \ / Uf — Ut \
< 顼---,©> + ▽(----- ) . ▽© dx + a(x)(------ ) 4 dx

£ Jq g Jq g

=- 1u；© dx
Jq

for any © e H1(Q), and a.e. 0 < t < T. Letting g — 0 and using 

uf — Ut strongly in L2(Q), we obtain that © is the weak solution of 

problem (3.1). □

Now we are ready to derive the necessary conditions that charac­

terize an optimal control.

Theorem 3.1. Given an optimal control a and corresponding U = 

U(a) = (u,Ut), there exists a weak s이니tion p = (p,pt) in H to the
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adjoint problem:

(3.2)

Ptt = Ap + apt + &(u — Zd), in Q x [0,T),

p = 0 dQ x [0, T]

p(T) = pt(T) = 0 x e Q.

Furthermore, a satisfies 

(3.3) a ="" g ,putdt
,in 3

in Q — 3

Proof. Let a e UM be an optimal control and U = U(a) be the 

corresponding optimal solution. Let a + el e U如 for 色 > 0 and 

U£ = U(a + el) be the corresponding weak solution of Eq.(1.1). We 

compute the directional derivative of the objective functional J (a) 

with respect to a in the direction of l. Since J is supposed to attain 

its minimum for a, we have

0 < lim j(a + el) — j(a)

8—0+ e

= lim [— [ [ [(u8 — Zd)2 — (u — Zd)2]dxdt + ^~ [ [(a + el) — a]dx)

—of 2e L J；' 2e J；、、 丿

(u — u)(u8 + u — 2Zd) dxdt + : / 2al + (el)2dx)

2&

= (3.4)明(u — Zd)dxdt + Bal dx,
J0 J 3 J 3

where 明 is defined in Lemma 3.1. Taking u — Zd as source like ” f ” and 

using the similar argument in Lemma 2.1, we obtain the existence and 

uniqueness of solution of problem (3.2). Assume that p is the solution 

of problem (3.2) i.e., p satisfies

(3.5)
< ptt(t),© > + / Vp(t) . ▽©dx — j apt(t)©dx

/ X3 (u — Zd)©dx 

Jq
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for any © e H1(Q), and a.e. 0 < t < T. Then

0 < / 徂u — Zd)dxdt + 如1成3dx
J 0 J 3 J Q

m 打、！ / Dm . T7 打/7* / 5、\ 】卜丄 / 4c"/ 膈ptt, tp > 十 / Vp , V tpdx — / apt (t)tpdx I dt 十 / paiXwdx
Jq Jq 丿 Jq

v~ ?/)<< s、> -I- / V7T).《7시)Ny -L / m(十、ih招y \，十 _|_ / Hn/ v (it甲tt, _p I I v p v 甲(人x I / ap\i，)甲t'人x j uI / 卜丿ai> x 3ux
J Q J Q J Q

by integration by parts twice in time and using p(0) = pt(0) = 0 and 

p(T) = Pt(T) = 0. Then from Eq.(3.1) for p, we obtain

0 < 1(x)(/ —p(x, t)ut(x, t)dt + 0a(x)x3(x))dx.
Q0

Note that l = l(x) is an arbitrary function with a+이 e Um for all small 

£. By a standard control argument involving the sign of the variation 

l depending on the size of a, we obtain the desired characterization of 

a, namely,

(3.6) a ={ 了宓(％'min、r

Thus proof is complete.

putdt
,in 3

in Q — 3
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