Acknowledgement
Supported by : Kunsan National University
References
- Chang, K. C., Infinite dimensional Morse theory and multiple solution problems, Birkhauser, (1993).
- Choi, Q. H. and Jung, T., Multiplicity of solutions and source terms in a fourth order nonlinear elliptic equation, Acta Mathematica Scientia 19 (4) (1999), 361-374.
- Choi, Q. H. and Jung, T., Multiplicity results on nonlinear biharmonic operator, Rocky Mountain J. Math. 29 (1) (1999), 141-164. https://doi.org/10.1216/rmjm/1181071683
- Choi, Q. H. and Jung, T., An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations 7 (1995), 390-410.
- Jung, T. S. and Choi, Q. H., Multiplicity results on a nonlinear biharmonic equation, Nonlinear Analysis, Theory, Methods and Applications, 30 (8) (1997), 5083-5092. https://doi.org/10.1016/S0362-546X(97)00381-7
- Khanfir, S. and Lassoued, L., On the existence of positive solutions of a semilinear elliptic equation with change of sign, Nonlinear Analysis, TMA, 22, No.11, 1309-1314(1994).
- Lazer, A. C. and Mckenna, J. P., Multiplicity results for a class of semilinear elliptic and parabolic boundary value problems, J. Math. Anal. Appl. 107 (1985), 371-395. https://doi.org/10.1016/0022-247X(85)90320-8
- Micheletti, A. M. and Pistoia, A., Multiplicity results for a fourth-order semi-linear elliptic problem, Nonlinear Analysis, TMA, 31 (7) (1998), 895-908.
- Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, CBMS. Regional conf. Ser. Math. 65, Amer. Math. Soc., Providence, Rhode Island (1986).
- Tarantello, A note on a semilinear elliptic problem, Diff. Integ.Equat., 5 (3) (1992), 561-565.