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BOUNDARY VALUE PROBLEMS FOR
THE STATIONARY NORDSTRÖM-VLASOV SYSTEM

Mihai Bostan

Abstract. We study the existence of weak solution for the stationary
Nordström-Vlasov equations in a bounded domain. The proof follows
by fixed point method. The asymptotic behavior for large light speed
is analyzed as well. We justify the convergence towards the stationary
Vlasov-Poisson model for stellar dynamics.

1. Introduction

We consider a population of particles and we assume that collisions are so
rare such that we can neglect them. In plasma physics the charged particles
interact by electro-magnetic forces and the evolution of the system is described
by the Vlasov-Maxwell equations. When the magnetic field is negligible we can
use the Vlasov-Poisson system. In astrophysics large stellar systems such as
galaxies or globular clusters interact by gravitational forces and the dynamics
of the system is given by the Einstein-Vlasov equations.

The Cauchy problem for the Vlasov-Poisson and Vlasov-Maxwell systems
are now well understood, cf. [3, 26, 29, 33, 35, 39], respectively [10, 16, 19,
20, 21, 24]. There are also some results for initial-boundary value problems
[1, 23] and boundary value problems [7, 22, 30, 31]. A lot of studies concerns
the stationary solutions and their stability [5, 6, 18, 32, 34].

It is well known that the Vlasov-Poisson model can be derived from the rel-
ativistic Vlasov-Maxwell model assuming that the particle velocities are small
compared to the light speed [8, 15, 25, 38].

The Einstein-Vlasov system is much more difficult, see [2, 36, 37]. A sim-
plified relativistic model is obtained by coupling the Vlasov equation to the
Nordström scalar gravitation theory [28].

We denote by z = z(t, x, p) ≥ 0 the particle density in the phase-space.
Here t ∈ R represents the time, x ∈ RN the position and p ∈ RN the impulsion,

Received July 1, 2008; Revised June 5, 2009.
2000 Mathematics Subject Classification. 35B35, 35A05, 35B45.
Key words and phrases. Nordström equation, Vlasov equation, Poisson equation, weak/

mild solutions.

c©2010 The Korean Mathematical Society

743



744 MIHAI BOSTAN

with N ≥ 1. The density z satisfies the following kinetic equation

(1) ∂tz+ vc(p) · ∇xz−
(

(∂tφ+ vc(p) · ∇xφ)
p

mc2
+
∇xφ

γc(p)

)
· ∇pz = 0,

coupled to the wave equation

(2)
1
c2
∂2

t φ−∆xφ = −eN+1
mc2

φ(t,x)

∫

RN

z(t, x, p)
γc(p)

dp.

Here m is the mass of particles, c is the light speed in the vacuum, γc(p) =(
1 + |p|2

m2c2

) 1
2
, p ∈ RN is the Lorentz factor and vc(p) = p

mγc(p) is the relativistic

velocity of a particle with impulsion p ∈ RN . For more details on the model
see [11]. After introducing the new unknown f(t, x, p) = e

N+1
mc2

φ(t,x)z(t, x, p)
the system becomes

(3) ∂tf + vc(p) · ∇xf + F (t, x, p) · ∇pf =
N + 1
mc2

f(t, x, p)Sφ,

(4)
1
c2
∂2

t φ−∆xφ = −µ(t, x),

(5) µ(t, x) =
∫

RN

f(t, x, p)
γc(p)

dp,

where S = ∂t + vc(p) · ∇x is the free-transport operator and F (t, x, p) =
−

(
Sφ p

mc2 + ∇xφ
γc(p)

)
. We impose the initial conditions

(6) f(0, ·, ·) = f0, φ(0, ·) = ϕ0, ∂tφ(0, ·) = ϕ1.

The Nordström-Vlasov system (3), (4), (5), (6) was analyzed recently by Calo-
gero and Rein. They proved that classical solutions exist at least locally in
time in three dimensions and globally in time in one dimension, cf. [13]. The
existence of global weak solutions is obtained in [14]. The convergence towards
the gravitational Vlasov-Poisson model when the light speed becomes large is
justified in [12].

The aim of this paper is to construct weak solutions for the stationary bound-
ary value Nordström-Vlasov system

(7)
vc(p) · ∇xf −

(
vc(p) · ∇xφ

p

mc2
+
∇xφ

γc(p)

)
· ∇pf

=
N + 1
mc2

f(x, p)vc(p) · ∇xφ, (x, p) ∈ Ω× RN ,

(8) −∆xφ = −µ(x), x ∈ Ω,

(9) µ(x) =
∫

RN

f(x, p)
γc(p)

dp, x ∈ Ω,
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with the boundary conditions

(10) f(x, p) = g(x, p), (x, p) ∈ Σ−, φ(x) = ϕ0(x), x ∈ ∂Ω,

with N ≥ 2. For the one dimensional case the reader can refer to [9]. Here
Ω is a smooth open bounded set of RN , Σ− = {(x, p) ∈ ∂Ω × RN : p · n(x)
< 0}, where n(x) represents the unit outward normal to ∂Ω at x and g, ϕ0 are
given functions. We introduce also the notations Σ = ∂Ω×RN , Σ+ = {(x, p) ∈
∂Ω× RN : p · n(x) > 0}, we denote by dσ the superficial measure on ∂Ω and
we consider the measures dν± on Σ± given by dν± = |vc(p)·n(x)| dσ(x) dp. By
weak solution for the stationary boundary value Nordström-Vlasov system (7),
(8), (9), (10) we understand a couple (f, φ) such that f satisfies the stationary
Vlasov equation (7) with the boundary condition f(x, p) = g(x, p), (x, p) ∈ Σ−

in the sense of distributions (see Section 2 for exact definitions and main prop-
erties) and φ is a weak solution of the Poisson equation (8) with the boundary
condition φ(x) = ϕ0(x), x ∈ ∂Ω. Basically we assume that the inflow bound-
ary condition g is non negative, bounded, locally integrable on Σ− such that∫

p·n(·)<0
g(·,p)
γc(p) dp ∈ L∞(∂Ω). In particular we establish our results for in-

flow boundary conditions g satisfying 0 ≤ g(x, p) ≤ C(1 + |p|)−δ, (x, p) ∈ Σ−.
Clearly such boundary conditions belong to L1

loc ∩ L∞(Σ−; dν−) and satisfy∫
p·n(·)<0

g(·,p)
γc(p) dp ∈ L∞(∂Ω) for any δ > N −1. One of the key points is to take

advantage of the conservation of the particle total energy along characteristics.
We use the method introduced by Poupaud in [30], but in a gravitational case.
We obtain the following existence result

Theorem 1.1. Assume that ϕ0 ∈ H1/2(∂Ω) ∩ L∞(∂Ω), ϕ0 ≥ 0 on ∂Ω, g ≥ 0
on Σ− such that

g(x, p) ≤ C

(1 + |p|)δ
, (x, p) ∈ Σ−

for some constants C > 0, δ > N − 1, N ≥ 2. Then, for any c > 0 there is
a weak solution (fc, φc) for the stationary Nordström-Vlasov system (7), (8),
(9), (10) satisfying

0 ≤ fc ≤ e
N+1
mc2

‖ϕ0‖L∞(∂Ω)‖g‖L∞(Σ−),

∫

RN

fc(·, p)
γc(p)

dp ∈ L∞(Ω),

φc ∈ H1(Ω), lim
R→+∞

∥∥∥∥∥
∫

|p|≥R

fc(·, p)
γc(p)

dp

∥∥∥∥∥
L∞(Ω)

= 0.

Moreover, if δ > 2N , N ∈ {2, 3} we have

sup
c≥1

∥∥∥∥
∫

RN

fc(·, p) dp
∥∥∥∥

L∞(Ω)

< +∞, lim
R→+∞

sup
c≥1

∥∥∥∥∥
∫

|p|≥R

fc(·, p) dp
∥∥∥∥∥

L∞(Ω)

= 0.

We justify also the asymptotic behavior towards the stationary boundary
value Vlasov-Poisson system for large light speed. As before, by weak solution
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for the stationary boundary value Vlasov-Poisson system we understand a cou-
ple (f, φ) such that f satisfies the Vlasov problem in the sense of distributions
and φ is a weak solution for the Poisson problem.

Theorem 1.2. Assume that ϕ0 ∈ H1/2(∂Ω) ∩ L∞(∂Ω), ϕ0 ≥ 0 on ∂Ω, g ≥ 0
on Σ− such that

g(x, p) ≤ C

(1 + |p|)δ
, (x, p) ∈ Σ−

for some constants C > 0, δ > 2N , N ∈ {2, 3}. For any c ≥ 1 let (fc, φc)
be the weak solution of the stationary Nordström-Vlasov system constructed in
Theorem 1.1. Then there is a sequence (ck)k, limk→+∞ck = +∞ such that

fk := fck
⇀ f, weakly ? in L∞(Ω× RN ),

φk := φck
→ φ, strongly in H1(Ω),

where (f, φ) is a weak solution of the Vlasov-Poisson system

(11)
p

m
· ∇xf −∇xφ · ∇pf = 0, (x, p) ∈ Ω× RN ,

(12) −∆xφ = −ρ(x) := −
∫

RN

f(x, p) dp, x ∈ Ω,

(13) f(x, p) = g(x, p), (x, p) ∈ Σ−, φ(x) = ϕ0(x), x ∈ ∂Ω.

Our paper is organized as follows. In Section 2 we recall the notions of
weak and mild solutions for the stationary Vlasov problem and we present the
properties of such solutions. In particular we deduce estimates for the mild
solution, some of them being independent of the light speed. In Section 3
we construct a fixed point map for a regularized Nordström-Vlasov system
and we show the existence of a fixed point by using the Schauder theorem.
The existence of weak solution for the Nordström-Vlasov system is obtained
in Section 4 by weak stability. We prove also the convergence towards the
gravitational Vlasov-Poisson system when the light speed goes to infinity.

2. The Vlasov equation

In this paragraph we assume that φ = φ(x), g = g(x, p) are given functions
and we introduce the notions of weak and mild solutions for the stationary
Vlasov problem

(14) vc(p) · ∇xf + F (x, p) · ∇pf =
N + 1
mc2

f(x, p)Sφ, (x, p) ∈ Ω× RN ,

(15) f(x, p) = g(x, p), (x, p) ∈ Σ−,
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where S = vc(p) · ∇x and F (x, p) = −
(
Sφ p

mc2 + ∇xφ
γc(p)

)
. Observe that the

divergence of the field (vc(p), F (x, p)) with respect to the variables (x, p) is
given by

(16) div(x,p)(vc(p), F (x, p)) = − N

mc2
Sφ.

Therefore the Vlasov equation (14) can be written formally

divx

(
vc(p)f(x, p)e−

φ(x)
mc2

)
+ divp

(
F (x, p)f(x, p)e−

φ(x)
mc2

)
= 0, (x, p) ∈ Ω×RN .

We have the usual definition for the weak solution:

Definition 2.1. Assume that φ ∈ W 1,∞(Ω), g ∈ L1
loc(Σ

−; dν−). We say that
f ∈ L1

loc(Ω × RN ) is a weak solution for the stationary Vlasov problem (14),
(15) if and only if

(17)
−

∫

Ω

∫

RN

f(x, p)e−
φ(x)
mc2 (vc(p) · ∇xθ + F (x, p) · ∇pθ) dp dx

=
∫

Σ−
g(x, p)e−

φ(x)
mc2 θ dν−

for any test function θ ∈ C1
c (Ω× RN ) satisfying θ|Σ+ = 0.

Assume now that φ ∈ W 2,∞(Ω) and for any (x, p) ∈ (Ω × RN ) ∪ Σ− let us
introduce the system of characteristics

(18)
dX

ds
= vc(P (s)),

dP

ds
= F (X(s), P (s)),

with the conditions

(19) X(s = 0) = x, P (s = 0) = p.

Notice that under the above regularity hypothesis on φ there is a unique C1

solution (X(s), P (s)) := (X(s;x, p), P (s;x, p)) of (18), (19) for s ∈ ]sin(x, p),
sout(x, p)[, where the entry/exit times are given by

(20) sin(x, p) = inf{τ ≤ 0 : X(s;x, p) ∈ Ω, ∀ s ∈]τ, 0[},

(21) sout(x, p) = sup{τ ≥ 0 : X(s;x, p) ∈ Ω, ∀ s ∈]0, τ [}.
Observe that the Vlasov equation (14) can be written

vc(p) · ∇x

(
f(x, p)e−

N+1
mc2

φ(x)
)

+ F (x, p) · ∇p

(
f(x, p)e−

N+1
mc2

φ(x)
)

= 0, (x, p) ∈ Ω× RN,

saying that f(x, p)e−
N+1
mc2

φ(x) is constant along all characteristics. We have the
definition:

Definition 2.2. Assume that φ ∈ W 2,∞(Ω). The mild solution (or solution
by characteristics) of the stationary Vlasov problem (14), (15) is given by

f(x, p)=e
N+1
mc2

φ(x)e−
N+1
mc2

φ(X(sin;x,p))g(X(sin;x, p), P (sin;x, p)), if sin(x, p)>−∞,
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and

f(x, p) = 0 if sin(x, p) = −∞.

By definition the mild solution is unique. Unfortunately, in general there is
no uniqueness for the weak solution because f can take arbitrary values on the
characteristics such that sin = −∞. In order to retrieve the uniqueness of the
weak solution we penalize the Vlasov equation. For any α > 0 we consider the
problem

(22) αf(x, p)+vc(p)·∇xf+F (x, p)·∇pf =
N + 1
mc2

f(x, p)Sφ, (x, p) ∈ Ω×RN ,

(23) f(x, p) = g(x, p), (x, p) ∈ Σ−.

The equation (22) can be written

αf(x, p)e−
φ(x)
mc2 + divx

(
vc(p)f(x, p)e−

φ(x)
mc2

)
+ divp

(
F (x, p)f(x, p)e−

φ(x)
mc2

)
= 0,

and thus we introduce the notion of weak solution for (22), (23) as in Def-
inition 2.1 for any φ ∈ W 1,∞(Ω), g ∈ L1

loc(Σ
−; dν−). We have the classical

uniqueness result.

Proposition 2.1. Assume that φ is smooth (for example φ ∈W 2,∞(Ω)), α > 0
and g ∈ L∞(Σ−; dν−). Then there is at most one bounded weak solution for
(22), (23).

Proof. Consider (fk)k∈{1,2} two bounded weak solutions for (22), (23) and let
f = f1 − f2. We have

(24) αf(x, p)+vc(p)·∇xf+F (x, p)·∇pf =
N + 1
mc2

f(x, p)Sφ, (x, p) ∈ Ω×RN ,

(25) f(x, p) = 0, (x, p) ∈ Σ−.

By (16) we know that divpF = − N
mc2Sφ and therefore (cf. [4, 17]) we obtain

2αf2e−
N+2
mc2

φ(x) + divx

(
f2e−

N+2
mc2

φ(x)vc(p)
)

+ divp

(
f2e−

N+2
mc2

φ(x)F (x, p)
)

= 0, (x, p) ∈ Ω× RN .

After integration on Ω× RN one gets

2α
∫

Ω

∫

RN

f2(x, p)e−
N+2
mc2

φ(x) dp dx+
∫

Σ+
f2(x, p)e−

N+2
mc2

φ(x) dν+ = 0,

saying that f |Ω×RN = 0 (and also f |Σ+ = 0). ¤
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2.1. Properties of the characteristics

We assume that φ ∈ W 2,∞(Ω) is a given function. We start by analyzing
the change of variables (x, p) → (X(s;x, p), P (s;x, p)), where (X,P ) solves
the system of characteristics (18), (19). By using (16) we deduce that the
determinant of the jacobian matrix J(s;x, p) := ∂(X(s;x,p),P (s;x,p))

∂(x,p) satisfies

(26)
d

ds
detJ(s;x, p) = − detJ(s;x, p)

N

mc2
d

ds
φ(X(s;x, p)),

and therefore we obtain

(27) det J(s;x, p) = e−
N

mc2
φ(X(s;x,p))e

N
mc2

φ(x) 6= 0,

saying that

(28) dX(s) dP (s) = e−
N

mc2
φ(X(s;x,p))e

N
mc2

φ(x) dx dp.

Consider now the change of variables

(29) O 3 (s, x, p) → (X(s;x, p), P (s;x, p)),

where
O = ∪(x,p)∈Σ− (]0, sout(x, p)[×{x} × {p}) .

By direct computations we check that

(30) dX dP = |vc(p) · n(x)|e− N
mc2

φ(X(s;x,p))e
N

mc2
φ(x) ds dσ(x) dp.

For any (x, p) ∈ Ω× RN we introduce the energy function

Wc(x, p) = mc2

((
1 +

|p|2
m2c2

) 1
2

e
φ(x)
mc2 − 1

)
.

We check easily that Wc is conserved along the characteristics.

Proposition 2.2. Assume that φ ∈ W 2,∞(Ω). Then for any solution of (18)
we have

d

ds
{Wc(X(s), P (s))} = 0, sin < s < sout.

Observe that
Wc(x, p) = e

φ(x)
mc2 Ec(p) +mc2

(
e

φ(x)
mc2 − 1

)
,

where Ec(p) = mc2
((

1 + |p|2
m2c2

) 1
2 − 1

)
is the relativistic kinetic energy. Ob-

viously we have

lim
c→+∞

Ec(p) =
|p|2
2m

, p ∈ RN ,

and
lim

c→+∞
mc2

(
e

φ(x)
mc2 − 1

)
= φ(x), x ∈ Ω,

and therefore the total relativistic energy Wc converges towards the total clas-
sical energy |p|2

2m + φ(x) when c goes to infinity, as expected.
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2.2. Properties of the mild solution

By using the results of the previous paragraph we are ready to establish
several properties of the mild solution of (14), (15). We have the following
standard results.

Proposition 2.3. Assume that

φ ∈ C1(Ω), ∇xφ ∈W 1,∞(Ω)N , g ∈ L∞loc(Σ
−; dν−).

Denote by f the mild solution of (14), (15). Then
1) if g is nonnegative, f is nonnegative;
2) f belongs to L∞loc(Ω × RN ). Moreover, if g ∈ L∞(Σ−; dν−), then f ∈

L∞(Ω× RN ) and

(31) ‖f‖L∞(Ω×RN ) ≤ e
N+1
mc2

supΩ φe−
N+1
mc2

inf∂Ω φ‖g‖L∞(Σ−;dν−) ;

3) for any test function ψ ∈ C0
c (Ω× RN ) we have

(32) ∫

Ω

∫

RN

f(x, p)ψ(x, p) dp dx

=
∫

Σ−
g(x, p)e−

φ(x)
mc2

∫ sout(x,p)

0

ψ(X(s;x, p), P (s;x, p))e
φ(X(s;x,p))

mc2 ds dν− ;

4) f is a weak solution for (14), (15).

Proof. The first statement and the last part of the second one are obvious. Let
us check that f is locally bounded. Take R > 0 and C > 0 such that

(33) |g(x, p)| ≤ C, a.e. (x, p) ∈ Σ−, |p| ≤ (m2c2 +R2)
1
2 e

2
mc2

supΩ |φ|.

Consider (x, p) ∈ Ω×RN , |p| ≤ R such that sin(x, p) > −∞ (the case sin(x, p) =
−∞ is trivial since f(x, p) = 0). By the definition of the mild solution we have

|f(x, p)| = e
N+1
mc2

φ(x)e−
N+1
mc2

φ(X(sin;x,p))|g(X(sin;x, p), P (sin;x, p))|
≤ e

N+1
mc2

supΩ φe−
N+1
mc2

inf∂Ω φ|g(X(sin;x, p), P (sin;x, p))|.(34)

By Proposition 2.2 we have also
(

1 +
|p|2
m2c2

) 1
2

e
φ(x)
mc2 =

(
1 +

|P (sin;x, p)|2
m2c2

) 1
2

e
φ(X(sin;x,p))

mc2 ,

and we deduce that

(35) |P (sin;x, p)| ≤ (m2c2 +R2)
1
2 e

2
mc2

supΩ |φ|.

Combining (33), (34), (35) we deduce that

|f(x, p)| ≤ e
N+1
mc2

supΩ φe−
N+1
mc2

inf∂Ω φC, a.e. (x, p) ∈ Ω× RN , |p| ≤ R,

and thus f is locally bounded. In order to establish the mild formulation (32)
observe that f± := max{0,±f} are the mild solutions of (14), (15) correspond-
ing to the boundary conditions g± := max{0,±g} and therefore it is sufficient
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to check (32) when g ≥ 0 for any nonnegative test function ψ ∈ C0
c (Ω × RN ).

This follows immediately by using the change of variables (29) and formula
(30). Indeed, since f is locally bounded and ψ is compactly supported, fψ is
integrable and we have∫

Ω

∫

RN

fψ dp dx

=
∫

Ω

∫

RN

f(x, p)ψ(x, p)1{sin(x,p)>−∞} dp dx

=
∫

Σ−

∫ sout(x,p)

0

f(X(s;x, p), P (s;x, p))ψ(X(s;x, p), P (s;x, p))

× |vc(p) · n(x)|e− N
mc2

φ(X(s;x,p))e
N

mc2
φ(x) ds dσ(x) dp

=
∫

Σ−
g(x, p)e−

φ(x)
mc2

∫ sout(x,p)

0

ψ(X(s;x, p), P (s;x, p))e
φ(X(s;x,p))

mc2 ds dν−.

For verifying the last statement the idea is to apply the mild formulation (32)
with the function

ψ(x, p) = −e−φ(x)
mc2 (vc(p) · ∇xθ + F (x, p) · ∇pθ)

for any test function θ ∈ C1
c (Ω × RN ) satisfying θ|Σ+ = 0. Observe that for

any (x, p) ∈ Σ− we have

e
φ(X(s;x,p))

mc2 ψ(X(s;x, p), P (s;x, p)) = − d

ds
θ(X(s;x, p), P (s;x, p)),

and thus

(36)
−

∫

Ω

∫

RN

f(x, p)e−
φ(x)
mc2 (vc(p) · ∇xθ + F (x, p) · ∇pθ) dp dx

=
∫

Σ−
g(x, p)e−

φ(x)
mc2

∫ sout(x,p)

0

{− d

ds
θ(X(s;x, p), P (s;x, p))} ds dν−.

By taking into account that θ|Σ+ = 0, we obtain for any (x, p) ∈ Σ− such that
sout(x, p) < +∞

(37)
∫ sout(x,p)

0

− d

ds
{θ(X(s;x, p), P (s;x, p))} ds = θ(x, p).

Combining (36), (37) we deduce formally that the weak formulation holds for
any test function θ ∈ C1

c (Ω × RN ) such that θ|Σ+ = 0. A rigorous proof
for checking that the mild solution is a weak solution could be the following.
Without loss of generality we assume that g ≥ 0. For any α > 0 consider fα

the mild solution of the penalized stationary Vlasov problem (22), (23). The
solution fα is given by
(38)

fα(x, p) = e
N+1
mc2

φ(x)e−
N+1
mc2

φ(X(sin;x,p))eαsin(x,p)g(X(sin;x, p), P (sin;x, p)),

if sin(x, p) > −∞,
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and fα(x, p) = 0 if sin(x, p) = −∞. Indeed, the equation (22) can be written
(39)
αfe−

N+1
mc2

φ(x) + vc(p) · ∇x

(
fe−

N+1
mc2

φ(x)
)

+ F (x, p) · ∇p

(
fe−

N+1
mc2

φ(x)
)

= 0,

(x, p) ∈ Ω× RN ,

and the above formula comes by observing that formally we have
d

ds
{eαsf(X(s;x, p), P (s;x, p))e−

N+1
mc2

φ(X(s;x,p))}=0, sin(x, p) < s < sout(x, p).

As before fα is nonnegative and satisfies the mild formulation∫

Ω

∫

RN

fα(x, p)ψ(x, p) dp dx

=
∫

Σ−
g dν−(x, p)e−

φ(x)
mc2

∫ sout(x,p)

0

e−αsψ(X(s;x, p), P (s;x, p))e
φ(X(s;x,p))

mc2 ds

for any test function ψ ∈ C0
c (Ω×RN ). Now we can verify easily that fα is weak

solution for (22), (23). Indeed, for any θ ∈ C1
c (Ω × RN ) satisfying θ|Σ+ = 0

consider

ψ(x, p) = e−
φ(x)
mc2 (α θ(x, p)− vc(p) · ∇xθ − F (x, p) · ∇pθ),

and observe that

e−αsψ(X(s;x, p), P (s;x, p))e
φ(X(s;x,p))

mc2 = − d

ds
{e−αsθ(X(s;x, p), P (s;x, p))}.

Therefore we obtain∫

Ω

∫

RN

fα(x, p)e−
φ(x)
mc2 (α θ(x, p)− vc(p) · ∇xθ − F (x, p) · ∇pθ) dp dx

=
∫

Σ−
g dν−(x, p)e−

φ(x)
mc2

∫ sout

0

− d

ds
{e−αsθ(X(s;x, p), P (s;x, p))}ds,

and we are done if we show that
∫ sout(x,p)

0

− d

ds
{e−αsθ(X(s;x, p), P (s;x, p))}ds = θ(x, p), (x, p) ∈ Σ−.

This is obvious if sout(x, p) < +∞. In the case sout(x, p) = +∞ observe that

(40)

∫ +∞

0

− d

ds
{e−αsθ(X(s;x, p), P (s;x, p))}ds

= θ(x, p)− lim
t→+∞

{e−αtθ(X(t;x, p), P (t;x, p))}
= θ(x, p).

Notice that we have 0 ≤ fα ≤ fβ ≤ f for any 0 < β ≤ α, where f is the
mild solution of (14), (15). Actually we have f = supα>0fα = limα↘0 fα. By
passing to the limit for α↘ 0 in the weak formulation satisfied by fα one gets
easily that f is also a weak solution for (14), (15). ¤
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Remark 2.1. Under the hypotheses of Proposition 2.3 the mild solution f has
a locally bounded trace γ+f on Σ+ satisfying the Green formula

(41)
−

∫

Ω

∫

RN

fe−
φ(x)
mc2 (vc(p) · ∇xθ + F (x, p) · ∇pθ) dp dx

+
∫

Σ+
γ+fe−

φ(x)
mc2 θ(x, p) dν+ =

∫

Σ−
ge−

φ(x)
mc2 θ(x, p) dν−

for any test function θ ∈ C1
c (Ω × RN ). The trace γ+f is given by the same

formula as those for f in Definition 2.2, is nonnegative if g is nonnegative, is
bounded if g is bounded and we have

(42) ‖γ+f‖L∞(Σ+;dν+) ≤ e
N+1
mc2

{sup∂Ω φ−inf∂Ω φ}‖g‖L∞(Σ−;dν−).

Analogous results hold for the solutions (fα)α>0.

We intend now to estimate the density µ(·) =
∫
RN

f(·,p)
γc(p) dp. The crucial point

is the conservation of the total energy Wc.

Proposition 2.4. Assume that φ ∈ C1(Ω),∇xφ ∈ W 1,∞(Ω)N , φ ≥ 0 on ∂Ω,
g ≥ 0 on Σ− and that there is a function H : [0,+∞[→ [0,+∞[ such that

g(x, p) ≤ H(Wc(x, p)), (x, p) ∈ Σ−.

We denote by f the mild solution of (14), (15). Then we have the inequalities

(43) f(x, p) ≤ e
N+1
mc2

φ(x)H(Wc(x, p))1{Wc(x,p)≥0}, (x, p) ∈ Ω× RN ,

(44) γ+f(x, p) ≤ e
N+1
mc2

sup∂Ω φH(Wc(x, p)), (x, p) ∈ Σ+.

Proof. Since φ is nonnegative on ∂Ω we have Wc(x, p) ≥ 0, ∀ (x, p) ∈ Σ. Take
(x, p) ∈ Ω× RN such that Wc(x, p) < 0. By Proposition 2.2 we have

Wc(X(s;x, p), P (s;x, p)) = Wc(x, p) < 0, ∀ s ∈]sin(x, p), sout(x, p)[.

Since Wc|Σ ≥ 0 we deduce that sin(x, p) = −∞, f(x, p) = 0 and thus the
inequality (43) is trivial. Assume now that (x, p) ∈ Ω×RN such thatWc(x, p) ≥
0. As previous we can suppose that sin(x, p) > −∞ and by the definition of
the mild solution and Proposition 2.2 we obtain

f(x, p) = e
N+1
mc2

φ(x)e−
N+1
mc2

φ(X(sin;x,p))g(X(sin;x, p), P (sin;x, p))

≤ e
N+1
mc2

φ(x)H(Wc(X(sin;x, p), P (sin;x, p)))

= e
N+1
mc2

φ(x)H(Wc(x, p))1{Wc(x,p)≥0}.

The inequality (44) follows in similar way. ¤

By using Proposition 2.4 we obtain the following estimates for µ:
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Proposition 2.5. Assume that φ ∈ C1(Ω),∇xφ ∈ W 1,∞(Ω)N , φ ≥ 0 on ∂Ω,
g ≥ 0 on Σ− and that there is δ > N − 1, N ≥ 2 such that

g(x, p) ≤ C

(1 + |p|)δ
, (x, p) ∈ Σ−

for some constant C > 0. Denote by f the mild solution of (14), (15), µ(·) =∫
RN

f(·,p)
γc(p) dp, µR(·) =

∫
|p|≥R

f(·,p)
γc(p) dp, ∀ R > 0. Then we have

(45) µ(x) ≤ Ce2
φ(x)
mc2 , x ∈ Ω,

(46) µR(x) ≤ C
e2

φ(x)
mc2

(
1 + max{0, rc(R)e

φ(x)
mc2 + φ(x)}

)δ−(N−1)

for some constant C = C(m, c, sup∂Ω φ,N, δ) and with

rc(R) =
R2

m

(
1 +

(
1 +

R2

m2c2

) 1
2
)−1

.

Proof. We check easily that there is a constant C1 = C1(m, c, sup∂Ω φ) such
that

g(x, p) ≤ C1

(1 +Wc(x, p))δ
, (x, p) ∈ Σ−.

Applying Proposition 2.4 with the function H(u) = C1
(1+u)δ , ∀ u ≥ 0 yields

(47) f(x, p) ≤ e
N+1
mc2

φ(x) C1

(1 +Wc(x, p))δ
1{Wc(x,p)≥0}, (x, p) ∈ Ω× RN .

The above inequality allows us to estimate
∫
|p|≥R

f(·,p)
γc(p) dp for any R ≥ 0. For

any fixed x ∈ Ω we use the change of variable

(48) mc2

{(
1 +

u2

m2c2

) 1
2

e
φ(x)
mc2 − 1

}
= W,

where

u ≥ max
{
R,mc

√(
e−2

φ(x)
mc2 − 1

)
+

}
=: uR

c (x),

W ≥ max

{
0,mc2

{(
1 +

R2

m2c2

) 1
2

e
φ(x)
mc2 − 1

}}
=: WR

c (x).

We have the equalities

(49) u = mc

(( W
mc2

+ 1
)2

e−2
φ(x)
mc2 − 1

) 1
2

, W ≥WR
c (x)

and

(50)
du

dW =
m

u

( W
mc2

+ 1
)
e−2

φ(x)
mc2 , W ≥WR

c (x).
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Note that we have

(51)

mc2

((
1 +

R2

m2c2

) 1
2

e
φ(x)
mc2 − 1

)

= mc2

((
1 +

R2

m2c2

) 1
2

− 1

)
e

φ(x)
mc2 +mc2

(
e

φ(x)
mc2 − 1

)

≥ R2

m

(
1 +

(
1 + R2

m2c2

) 1
2

)eφ(x)
mc2 + φ(x).

We deduce that

(52) WR
c (x) ≥ max{0, rc(R)e

φ(x)
mc2 + φ(x)},

where rc(R) = R2

m

„
1+
“
1+ R2

m2c2

” 1
2
« , ∀ R ≥ 0, c > 0. Take now R ≥ 0 and let us

estimate
∫
|p|≥R

f(x,p)
γc(p) dp. We obtain

∫

|p|≥R

f(x, p)
γc(p)

dp

≤ C1 e
N+1
mc2

φ(x)

∫

|p|≥R

1{Wc(x,p)≥0}
γc(p)(1 +Wc(x, p))δ

dp

≤ C2 e
N+1
mc2

φ(x)

∫ +∞

uR
c (x)

uN−1 du

(1 + u)
(

1 +mc2
((

1 + u2

m2c2

) 1
2 e

φ(x)
mc2 − 1

))δ

= C2 e
N+1
mc2

φ(x)

∫ +∞

WR
c (x)

(mc)N−2
(( W

mc2 + 1
)2
e−2

φ(x)
mc2 − 1

)N−2
2

1 +mc
(( W

mc2 + 1
)2
e−2

φ(x)
mc2 − 1

) 1
2

× m

(1 +W)δ

( W
mc2

+ 1
)
e−2

φ(x)
mc2 dW

= C2 e
N

mc2
φ(x)

∫ +∞

WR
c (x)

(mc)N−2(Q2(W)− 1)
N−2

2 m Q(W)
(1 +mc(Q2(W)− 1)

1
2 )(1 +W)δ

dW,

where we used the notation Q(W) =
( W

mc2 + 1
)
e−

φ(x)
mc2 . By taking into account

that

sup
Q≥1

Q

1 +mc(Q2 − 1)
1
2
< +∞,

we deduce that
∫

|p|≥R

f(x, p)
γc(p)

dp ≤ C3 e
N

mc2
φ(x)

∫ +∞

WR
c (x)

(Q2(W)− 1)
N−2

2

(1 +W)δ
dW(53)
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= C3 e
2

φ(x)
mc2

∫ +∞

WR
c (x)

(( W
mc2 + 1

)2 − e2
φ(x)
mc2

)N−2
2

(1 +W)δ
dW

≤ C3 e
2

φ(x)
mc2

∫ +∞

WR
c (x)

( W
mc2

+ 1
)

N−2 dW
(1 +W)δ

≤ C4 e
2

φ(x)
mc2

∫ +∞

WR
c (x)

dW
(1 +W)δ−N+2

.

In the above computations C2, C3, C4 denote some constants depending on
m, c, sup∂Ω φ,N . For R = 0 one gets

µ(x) =
∫

RN

f(x, p)
γc(p)

dp ≤ C4 e
2

φ(x)
mc2

∫ +∞

0

dW
(1 +W)δ−N+2

≤ C e2
φ(x)
mc2 , x ∈ Ω,(54)

since we have δ > N − 1. Take now R > 0. We have

µR(x) =
∫

|p|≥R

f(x, p)
γc(p)

dp ≤ C4 e
2

φ(x)
mc2

(δ −N + 1)(1 +WR
c (x))δ−N+1

≤ C e2
φ(x)
mc2

(
1 + max{0, rc(R)e

φ(x)
mc2 + φ(x)}

)δ−N+1
.(55)

¤

The above estimates allow us to justify the existence of weak solution for the
stationary Nordström-Vlasov system. We intend to investigate the asymptotic
behavior of these solutions when the light speed goes to infinity. We need to
establish uniform estimates with respect to c.

Proposition 2.6. Assume that φ ∈ C1(Ω),∇xφ ∈ W 1,∞(Ω)N , φ ≥ 0 on ∂Ω,
g ≥ 0 on Σ− and that there is δ > 2N , N ≥ 2 such that

(56) g(x, p) ≤ C

(1 + |p|)δ
, (x, p) ∈ Σ−

for some constant C > 0. Denote by f the mild solution of (14), (15). Then
we have for any c ≥ 1, x ∈ Ω

(57)
∫

RN

f(x, p) dp ≤ C e
φ(x)
mc2

(
1 + |φ(x)|N−2

2

)
,

(58)
∫

|p|≥R

f(x, p) dp ≤
C e

φ(x)
mc2

(
1 + |φ(x)|N−2

2

)

(
1 + max{0, r(R)e

φ(x)
mc2 + φ(x)}

) δ
2−N
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for some constant C = C(m, sup∂Ω φ,N, δ) and with

r(R) =
R2

m

(
1 +

(
1 + R2

m2

) 1
2

) .

Proof. In the following computations the notation C stands for constants de-
pending on m, ‖φ‖L∞(∂Ω), δ,N but not on the light speed. Observe that for
any c > 0 we have the inequalities

Ec(p) = mc2

((
1 +

|p|2
m2c2

) 1
2

− 1

)
≤ |p|2

2m
, p ∈ RN

and
mc2

(
1− e−

φ(x)
mc2

)
≤ φ(x), x ∈ Ω.

Therefore we obtain for any (x, p) ∈ Σ− and c ≥ 1

g(x, p) ≤ C
(
1 + |p|2

2m + φ(x)
) δ

2

≤ C
(

1 +mc2
((

1 + |p|2
m2c2

) 1
2 − e−

φ(x)
mc2

)) δ
2

=
C e

δφ(x)
2mc2

(
e

φ(x)
mc2 +mc2

((
1 + |p|2

m2c2

) 1
2
e

φ(x)
mc2 − 1

)) δ
2

≤ C

(1 +Wc(x, p))
δ
2
.

By Proposition 2.4 we deduce that

(59) f(x, p) ≤ e
N+1
mc2

φ(x) C

(1 +Wc(x, p))
δ
2
1{Wc(x,p)≥0}, (x, p) ∈ Ω× RN .

For any R ≥ 0 we use one more time the change of variable (48), (49), (50).
By using (59) one gets as before

∫

|p|≥R

f(x, p) dp ≤ Ce
N+1
mc2

φ(x)

∫ +∞

uR
c (x)

uN−1 du
(

1 +mc2
((

1 + u2

m2c2

) 1
2 e

φ(x)
mc2 − 1

)) δ
2

= Ce
N+1
mc2

φ(x)

∫ +∞

WR
c (x)

(mc)N−2
(( W

mc2 + 1
)2
e−2

φ(x)
mc2 − 1

)N−2
2

(1 +W)
δ
2

(60)

×m

( W
mc2

+ 1
)
e−2

φ(x)
mc2 dW, x ∈ Ω.
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Observe that for any W ≥WR
c (x) and c ≥ 1 we have

mc

(( W
mc2

+ 1
)2

e−2
φ(x)
mc2 − 1

) 1
2

= mc e−
φ(x)
mc2

( W
mc2

( W
mc2

+ 2
)

+ 1− e2
φ(x)
mc2

) 1
2

≤ mc e−
φ(x)
mc2

( W
mc2

( W
mc2

+ 2
)
− 2φ(x)

mc2

) 1
2

(61)

≤ Ce−
φ(x)
mc2

(
W + 1 + |φ(x)| 12

)
.

Combining (60), (61) yields

(62)
∫

|p|≥R

f(x, p) dp ≤ Ce
φ(x)
mc2

∫ +∞

WR
c (x)

(1 +W)N−2 + |φ(x)|N−2
2

(1 +W)
δ
2−1

dW.

For R = 0 one gets

(63)
∫

RN

f(x, p) dp ≤ Ce
φ(x)
mc2

(
1 + |φ(x)|N−2

2

)
, x ∈ Ω, c ≥ 1,

since we have δ > 2N . By taking into account that for any R > 0, x ∈ Ω, c ≥ 1
we have

WR
c (x) ≥ max{0, r(R) e

φ(x)
mc2 + φ(x)},

we obtain

(64)
∫

|p|≥R

f(x, p) dp ≤
Ce

φ(x)
mc2

(
1 + |φ(x)|N−2

2

)

(
1 + max{0, r(R)e

φ(x)
mc2 + φ(x)}

) δ
2−N

.

¤

Remark 2.2. For any α > 0 denote by fα the mild solution of (22), (23) and
by f the mild solution of (14), (15). Since 0 ≤ fα ≤ f we deduce that the
conclusions of Propositions 2.5, 2.6 hold true for fα, uniformly with respect to
α > 0.

3. Fixed point application

We intend to show the existence of weak solution for the Nordström-Vlasov
equations by using the Schauder fixed point theorem. We assume that ϕ0 is
a nonnegative smooth function on the boundary ∂Ω and we consider φ0 the
solution of the problem

(65) −∆xφ0 = 0, x ∈ Ω, φ0(x) = ϕ0(x), x ∈ ∂Ω.

If Ω is of class C3 and ϕ0 belongs to W 3− 1
q ,q(∂Ω) for some q > N , then

∇xφ0 ∈W 2,q(Ω) ⊂W 1,∞(Ω). In order to use the mild formulation we need to
regularize the field ∇xφ. Since we want to preserve some information about the
trace of φ on the boundary ∂Ω it is convenient to use some special regularization
procedure. Let us introduce some notations. For any ε > 0 consider

Oε = {x ∈ Ω : dist(x, ∂Ω) < ε}.



BOUNDARY VALUE PROBLEMS 759

Since Ω is bounded and smooth, there is εΩ > 0 and a smooth function D : Ω →
R such that D(x) = dist(x, ∂Ω), ∀ x ∈ OεΩ , ν = −∇xD is regular and bounded
in Ω and ν(x) = n(P∂Ω(x)) for any x ∈ OεΩ , where P∂Ω is the projection on
∂Ω and n is the unit outward normal on ∂Ω. In particular ν(x) = n(x) for
any x ∈ ∂Ω. Consider ζ ∈ C∞c (RN ), ζ ≥ 0, supp ζ ⊂ {x ∈ RN : |x| ≤ 1},∫
RN ζ(x) dx = 1, ζε(·) = 1

εN ζ
( ·

ε

)
for any ε > 0. Following the construction in

[27] for any φ ∈ H1
0 (Ω) we define

Rεφ(x) =
∫

RN

ζε(y)φ(x+ 2εν(x)− y) dy

=
∫

RN

ζε(x+ 2εν(x)− y)φ(y) dy, x ∈ Ω,(66)

where φ(x) = φ(x), x ∈ Ω and φ(x) = 0, x ∈ RN − Ω. If Ω is of class C3,
then ν is of class C2 and therefore Rεφ ∈ C2(RN ). Observe that for ε small
enough we have Rεφ(x) = 0, ∀ x ∈ Oε and thus Rεφ ∈ C2

c (Ω). Moreover we
have limε↘0Rεφ = φ in H1(Ω). For any c > 0 we define the fixed point map
Fc,ε as follows: for φ ∈ H1

0 (Ω) consider Fc,εφ = φ̃ where
- f is the mild solution for the stationary regularized Vlasov problem

εf(x, p) + vc(p) · ∇xf −
(
vc(p) · ∇x(Rεφ+ φ0)

p

mc2
+
∇x(Rεφ+ φ0)

γc(p)

)
· ∇pf

(67)

=
N + 1
mc2

f(x, p)vc(p) · ∇x(Rεφ+ φ0), (x, p) ∈ Ω× RN ,

(68) f(x, p) = g(x, p), (x, p) ∈ Σ− ;

- φ̃ is the solution of the Poisson problem

(69) −∆xφ̃ = −µ(x), x ∈ Ω,

(70) φ̃(x) = 0, x ∈ ∂Ω,

with µ(·) =
∫
RN

f(·,p)
γc(p) dp.

The properties of the map Fc,ε are summed up in the following straightfor-
ward result:

Proposition 3.1. Assume that Ω is regular, ϕ0 ∈ W 3− 1
q ,q(∂Ω) for some q >

N , ϕ0 ≥ 0 on ∂Ω, g ≥ 0 on Σ− such that

(71) g(x, p) ≤ C

(1 + |p|)δ
, (x, p) ∈ Σ−

for some constants C > 0, δ > N − 1 with N ≥ 2. Then
1) there is a constant Cc = C(m, c, sup∂Ω ϕ0, N, δ) such that

‖Fc,εφ‖H1(Ω) ≤ Cc, ∀ φ ∈ H1
0 (Ω), φ ≤ 0 ;

2) the map Fc,ε is continuous with respect to the weak topology of H1(Ω);
3) there is a fixed point for the application Fc,ε.
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Proof. 1) For any φ ∈ H1
0 (Ω), φ ≤ 0 we have Rεφ ≤ 0. By Proposition 2.5 and

Remark 2.2 we know that

0 ≤ µ(x) ≤ C1e
2

φ0(x)+Rεφ(x)
mc2 ≤ C1e

2
mc2

sup∂Ω ϕ0 =: C2, x ∈ Ω(72)

for some constant C1 = C1(m, c, sup∂Ω ϕ0, N, δ). In particular we deduce that
‖µ‖L2(Ω) ≤ C2 (meas(Ω))1/2 which implies that

‖Fc,εφ‖H1(Ω) = ‖φ̃‖H1(Ω) ≤ C3(m, c, sup
∂Ω

ϕ0, N, δ) =: Cc.

2) The arguments are standard. Take (φk)k ⊂ H1
0 (Ω) such that limk→+∞φk

= φ weakly in H1(Ω). By weak convergence we have

(73) Rεφk(x) → Rεφ(x), ∇xRεφk(x) → ∇xRεφ(x), x ∈ Ω.

We check easily that

(74) sup
k
{‖Rεφk‖L∞(Ω) + ‖∇xRεφk‖L∞(Ω)} < +∞

and by using the dominated convergence theorem we have

(75) lim
k→+∞

∇xRεφk = ∇xRεφ strongly in L2(Ω)N .

Denote by (fk)k, f the mild solutions of (67), (68) corresponding to the fields
(∇xRεφk)k, respectively ∇xRεφ. By Proposition 2.3 we know that (fk)k are
also weak solutions and therefore, for any test function θ ∈ C1

c (Ω × RN ),
θ|Σ+ = 0 we can write

∫

Ω

∫

RN

fk(x, p)e−
Rεφk(x)+φ0(x)

mc2 (εθ(x, p)− vc(p) · ∇xθ − Fk(x, p) · ∇pθ) dp dx

(76)

=
∫

Σ−
g(x, p)e−

ϕ0(x)
mc2 θ(x, p) dν−,

where Fk(x, p) = −
(
vc(p) · ∇x(Rεφk + φ0) p

mc2 + ∇x(Rεφk+φ0)
γc(p)

)
. By Proposi-

tion 2.3 we have

(77) sup
k
‖fk‖L∞(Ω×RN ) ≤ sup

k
e

N+1
mc2

supΩ(Rεφk+φ0)‖g‖L∞(Σ−;dν−) < +∞,

and therefore we can extract a sequence (ki)i such that fki ⇀ f̃ weakly ? in
L∞(Ω × RN ). By using (73), (74), (75) we can pass easily to the limit with
respect to i in the weak formulations (76) written for k = ki and we deduce
that f̃ is a weak solution for (67), (68). By Proposition 2.1 we deduce that
f̃ = f . Actually all the sequence (fk)k converges weakly ? in L∞(Ω × RN )
towards f . Denote by (µk)k and µ the densities given by

µk(·) =
∫

RN

fk(·, p)
γc(p)

dp, ∀ k, µ(·) =
∫

RN

f(·, p)
γc(p)

dp.
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By using Proposition 2.5 and by taking into account that supk ‖Rεφk+φ0‖L∞(Ω)

< +∞ we deduce that

(78) sup
k≥1

‖µk‖L∞(Ω) < +∞, lim
R→+∞

sup
k≥1

∥∥∥∥∥
∫

|p|≥R

fk(·, p)
γc(p)

dp

∥∥∥∥∥
L∞(Ω)

= 0

and we obtain easily that µk ⇀ µ weakly in Ls(Ω), ∀ 1 ≤ s < +∞ and µk ⇀ µ

weakly ? in L∞(Ω). Consider (φ̃k)k, φ̃ the solutions of the problems

−∆xφ̃k = −µk(x), x ∈ Ω, φ̃k(x) = 0, x ∈ ∂Ω,

−∆xφ̃ = −µ(x), x ∈ Ω, φ̃(x) = 0, x ∈ ∂Ω.

Since (µk)k is bounded in L2(Ω), (φ̃k)k is bounded in H2(Ω) and thus we
can extract a subsequence (φ̃ki

)i which converges in H1(Ω). By using the
convergence µki

⇀ µ weakly ? in L∞(Ω) we deduce that limi→+∞ φ̃ki
= φ̃ in

H1(Ω). In fact all the sequence (φ̃k)k = (Fc,εφk)k converges strongly in H1(Ω)
towards φ̃ = Fc,εφ. In particular Fc,ε is continuous with respect to the weak
topology of H1(Ω).

3) We consider the set Xc,ε = {φ ∈ H1
0 (Ω) : ‖φ‖H1(Ω) ≤ Cc, φ ≤ 0} which

is convex and compact with respect to the weak topology of H1(Ω). Observe
also that Fc,ε(Xc,ε) ⊂ Xc,ε. Indeed, by construction φ̃ = Fc,εφ ∈ H1

0 (Ω) and
by the first point we have ‖φ̃‖H1(Ω) ≤ Cc. Since −∆xφ̃ = −µ(x) ≤ 0, x ∈ Ω
and φ̃|∂Ω = 0 we have supΩ φ̃ ≤ 0. We conclude by the Schauder fixed point
theorem. ¤

4. The stationary Nordström-Vlasov equations

By passing to the limit with respect to ε↘ 0 we obtain the existence of weak
solution for the stationary Nordström-Vlasov system as stated in Theorem 1.1.

Proof of Theorem 1.1. For any fixed c > 0 take (εk)k≥1 a decreasing sequence
converging towards 0 and consider ϕ0,k ∈ W 3− 1

q ,q(∂Ω) for some q > N such
that
(79)

lim
k→+∞

ϕ0,k = ϕ0 in H1/2(∂Ω), sup
k≥1

‖ϕ0,k‖L∞(∂Ω) ≤ ‖ϕ0‖L∞(∂Ω), ϕ0,k ≥ 0,∀ k.

By Proposition 3.1 there is (fc,k, φc,k) solution for

εkfc,k + vc(p) · ∇xfc,k −
(
vc(p) · ∇x(Rεk

φc,k + φ0,k)
p

mc2
+
∇x(Rεk

φc,k + φ0,k)
γc(p)

)
· ∇pfc,k

(80)

=
N + 1
mc2

fc,k(x, p) vc(p) · ∇x(Rεk
φc,k + φ0,k), (x, p) ∈ Ω× RN ,

(81) −∆xφc,k = −µc,k(x) = −
∫

RN

fc,k(x, p)
γc(p)

dp, −∆xφ0,k = 0, x ∈ Ω,
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(82)
fc,k(x, p) = g(x, p), (x, p) ∈ Σ−, φc,k(x) = 0, φ0,k(x) = ϕ0,k(x), x ∈ ∂Ω

such that

0 ≤ φ0,k(x) ≤ ‖ϕ0,k‖L∞(∂Ω) ≤ ‖ϕ0‖L∞(∂Ω), φc,k(x) ≤ 0, ∀ x ∈ Ω, ∀ k ≥ 1,

0 ≤ fc,k(x, p) ≤ e
N+1
mc2

‖ϕ0‖L∞(∂Ω)‖g‖L∞(Σ−), (x, p) ∈ Σ−, k ≥ 1,

sup
k≥1

∥∥∥∥
∫

RN

fc,k(·, p)
γc(p)

dp

∥∥∥∥
L∞(Ω)

≤ C(c)e
2

mc2
‖ϕ0‖L∞(∂Ω)

for some constant depending on c. In particular we have

sup
k≥1

‖µc,k‖LN+1(Ω) < +∞,

and thus

sup
k≥1

‖φc,k‖L∞(Ω) ≤ C sup
k≥1

‖φc,k‖W 1,N+1(Ω) ≤ C sup
k≥1

‖µc,k‖LN+1(Ω) < +∞.

By using Proposition 2.5 we deduce easily that

lim
R→+∞

sup
k≥1

∥∥∥∥∥
∫

|p|≥R

fc,k(·, p)
γc(p)

dp

∥∥∥∥∥
L∞(Ω)

= 0.

We can assume (after extraction eventually) that

lim
k→+∞

fc,k = fc, weakly ? in L∞(Ω× RN ),

lim
k→+∞

µc,k = µc :=
∫

RN

fc(·, p)
γc(p)

dp, weakly ? in L∞(Ω),

lim
k→+∞

φc,k = φc, strongly in H1(Ω),

lim
k→+∞

φ0,k = φ0, strongly in H1(Ω),

where φ0 is the solution of (65). We check easily that (fc, φc + φ0) is a weak
solution of the stationary Nordström-Vlasov system. Observe also that

0 ≤ fc ≤ e
N+1
mc2

‖ϕ0‖L∞(∂Ω)‖g‖L∞(Σ−), lim
R→+∞

∥∥∥∥∥
∫

|p|≥R

fc(·, p)
γc(p)

dp

∥∥∥∥∥
L∞(Ω)

= 0.

Assume now that δ > 2N with N ∈ {2, 3}. By using Proposition 2.6 we have
for any c ≥ 1

∫

RN

fc,k(x, p) dp ≤ C1e
‖ϕ0‖L∞(∂Ω)

mc2 (1 + |Rεk
φc,k(x) + φ0,k(x)|N−2

2 )

≤ C2(1 + |Rεk
φc,k(x)|N−2

2 ), x ∈ Ω, k ≥ 1(83)
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for some constants C1, C2 depending on m, ‖ϕ0‖L∞(∂Ω), N, δ but not on c. If
N = 2 the inequality (83) gives the uniform estimates

(84) sup
k≥1,c≥1

‖µc,k‖L∞(Ω) ≤ sup
k≥1,c≥1

∥∥∥∥
∫

R2
fc,k(·, p) dp

∥∥∥∥
L∞(Ω)

≤ 2C2,

(85)

sup
k≥1,c≥1

‖φc,k‖L∞(Ω) ≤ C(Ω) sup
k≥1,c≥1

‖φc,k‖W 1,3(Ω)

≤ C(Ω) sup
k≥1,c≥1

‖µc,k‖L3(Ω) < +∞.

Combining (85), (58) yields

(86) lim
R→+∞

sup
k≥1,c≥1

∥∥∥∥∥
∫

|p|≥R

fc,k(·, p) dp
∥∥∥∥∥

L∞(Ω)

= 0.

By passing to the limit with respect to k we obtain that fc = w ? limk→+∞fc,k

satisfies

sup
c≥1

∥∥∥∥
∫

R2
fc(·, p) dp

∥∥∥∥
L∞(Ω)

< +∞, lim
R→+∞

sup
c≥1

∥∥∥∥∥
∫

|p|≥R

fc(·, p) dp
∥∥∥∥∥

L∞(Ω)

= 0.

We analyze now the case N = 3. We have from (83)

(87)
∫

R3
fc,k(x, p) dp ≤ C2(1 + |Rεk

φc,k(x)|1/2), x ∈ Ω, k ≥ 1, c ≥ 1.

We deduce that for any s > 3, c ≥ 1 we have

‖µc,k‖s
Ls(Ω) ≤ C3(1 + ‖Rεk

φc,k‖s/2

Ls/2(Ω)
)

≤ C4(1 + ‖φc,k‖s/2

Ls/2(Ω)
)

≤ C5(1 + ‖φc,k‖s/2
Ls(Ω))

≤ C6(1 + ‖µc,k‖s/2
Ls(Ω))

for some constants C3, C4, C5, C6 not depending on k ≥ 1 and c ≥ 1 and
therefore we obtain supk≥1,c≥1 ‖µc,k‖Ls(Ω) < +∞. Finally one gets

sup
k≥1,c≥1

‖φc,k‖L∞(Ω) ≤ C7(Ω) sup
k≥1,c≥1

‖φc,k‖W 1,s(Ω)

≤ C8 sup
k≥1,c≥1

‖µc,k‖Ls(Ω) < +∞.

From (87), (58) we deduce that

sup
k≥1,c≥1

∥∥∥∥
∫

R3
fc,k(·, p) dp

∥∥∥∥
L∞(Ω)

< +∞,

lim
R→+∞

sup
k≥1,c≥1

∥∥∥∥∥
∫

|p|≥R

fc,k(·, p) dp
∥∥∥∥∥

L∞(Ω)

= 0.
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By passing to the limit with respect to k we obtain that fc = w ? limk→+∞fc,k

satisfies

sup
c≥1

∥∥∥∥
∫

R3
fc(·, p) dp

∥∥∥∥
L∞(Ω)

< +∞, lim
R→+∞

sup
c≥1

∥∥∥∥∥
∫

|p|≥R

fc(·, p) dp
∥∥∥∥∥

L∞(Ω)

= 0.
¤

For any c > 0 we proved the existence of weak solution for the stationary
Nordström-Vlasov system. A natural question is what happens if the light
speed c goes to infinity. We can prove the convergence towards a weak solution
of the Vlasov-Poisson system for stellar dynamics as stated in Theorem 1.2.

Proof of Theorem 1.2. Take (ck)k an increasing sequence such that limk→+∞ ck
= +∞. For any k we consider the solution (fk, φk) := (fck

, φck
) constructed in

Theorem 1.1.

vk(p) · ∇xfk −
(
vk(p) · ∇xφk

p

mc2k
+
∇xφk

γk(p)

)
· ∇pfk

=
N + 1
mc2k

fk(x, p) vk(p) · ∇xφk, (x, p) ∈ Ω× RN ,(88)

(89) −∆xφk = −µk(x) := −
∫

RN

fk(x, p)
γk(p)

dp, x ∈ Ω,

(90) fk(x, p) = g(x, p), (x, p) ∈ Σ−, φk(x) = ϕ0(x), x ∈ ∂Ω,

where γk(p) = γck
(p), vk(p) = vck

(p), p ∈ RN . By Theorem 1.1 we also know
that

sup
k≥1

‖fk‖L∞(Ω×RN ) ≤ e
N+1
mc2

‖ϕ0‖L∞(∂Ω)‖g‖L∞(Σ−),

sup
k≥1

∥∥∥∥
∫

RN

fk(·, p) dp
∥∥∥∥

L∞(Ω)

< +∞, lim
R→+∞

sup
k≥1

∥∥∥∥∥
∫

|p|≥R

fk(·, p) dp
∥∥∥∥∥

L∞(Ω)

= 0.

We can assume (after extraction eventually) that

fk ⇀ f weakly ? in L∞(Ω× RN ),

µk ⇀ ρ :=
∫

RN

f(·, p) dp weakly ? in L∞(Ω),

φk → φ strongly in H1(Ω).

By taking into account that vk(p) → p
m uniformly on compact sets of RN we

deduce easily that (f, φ) is a weak solution for the stationary Vlasov-Poisson
system (11), (12), (13). Moreover the function f satisfies

∫

RN

f(·, p) dp ∈ L∞(Ω), lim
R→+∞

∥∥∥∥∥
∫

|p|≥R

f(·, p) dp
∥∥∥∥∥

L∞(Ω)

= 0.
¤
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