• Title/Summary/Keyword: Charge Trapping Effect

Search Result 57, Processing Time 0.033 seconds

Irreversible Charge Trapping at the Semiconductor/Polymer Interface of Organic Field-Effect Transistors (유기전계효과 트랜지스터의 반도체/고분자절연체 계면에 발생하는 비가역적 전하트래핑에 관한 연구)

  • Im, Jaemin;Choi, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.129-134
    • /
    • 2020
  • Understanding charge trapping at the interface between conjugated semiconductor and polymer dielectric basically gives insight into the development of long-term stable organic field-effect transistors (OFET). Here, the charge transport properties of OFETs using polymer dielectric with various molecular weights (MWs) have been investigated. The conjugated semiconductor, pentacene exhibited morphology and crystallinity, insensitive to MWs of polymethyl methacrylate (PMMA) dielectric. Consequently, transfer curves and field-effect mobilities of as-prepared devices are independent of MWs. Under bias stress in humid environment, however, the drain current decay as well as transfer curve shift are found to increase as the MW of PMMA decreases (MW effect). The charge trapping induced by MW effect is irreversible, that is, the localized charges are difficult to be delocalized. The MW effect is caused by the variation in the density of polymer chain ends in the PMMA: the free volumes at the PMMA chain ends act as charge trap sites, corresponding to drain current decay depending on MWs of PMMA.

Newly Synthesized Silicon Quantum Dot-Polystyrene Nanocomposite Having Thermally Robust Positive Charge Trapping

  • Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.221-221
    • /
    • 2013
  • Striving to replace the well known silicon nanocrystals embedded in oxides with solution-processable charge-trapping materials has been debated because of large scale and cost effective demands. Herein, a silicon quantum dot-polystyrene nanocomposite (SiQD-PS NC) was synthesized by postfunctionalization of hydrogen-terminated silicon quantum dots (H-SiQDs) with styrene using a thermally induced surface-initiated polymerization approach. The NC contains two miscible components: PS and SiQD@PS, which respectively are polystyrene and polystyrene chains-capped SiQDs. Spin-coated films of the nanocomposite on various substrate were thermally annealed at different temperatures and subsequently used to construct metal-insulator-semiconductor (MIS) devices and thin film field effect transistors (TFTs) having a structure p-$S^{++}$/$SiO_2$/NC/pentacene/Au source-drain. C-V curves obtained from the MIS devices exhibit a well-defined counterclockwise hysteresis with negative fat band shifts, which was stable over a wide range of curing temperature ($50{\sim}250^{\circ}C$. The positive charge trapping capability of the NC originates from the spherical potential well structure of the SiQD@PS component while the strong chemical bonding between SiQDs and polystyrene chains accounts for the thermal stability of the charge trapping property. The transfer curve of the transistor was controllably shifted to the negative direction by chaining applied gate voltage. Thereby, this newly synthesized and solution processable SiQD-PS nanocomposite is applicable as charge trapping materials for TFT based memory devices.

  • PDF

Study on the Structural Stability and Charge Trapping Properties of High-k HfO2 and HFO2/Al2O3/HfO2 Stacks (High-k HfO2와 HfO2/Al2O3/HfO2 적층막의 구조 안정성 및 전하 트랩핑 특성 연구)

  • Ahn, Young-Soo;Huh, Min-Young;Kang, Hae-Yoon;Sohn, Hyunchul
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.256-261
    • /
    • 2010
  • In this work, high-k dielectric stacks of $HfO_2$ and $HfO_2$/$Al_2O_3$/$HfO_2$ (HAH) were deposited on $SiO_2/Si$ substrates by atomic layer deposition as charge trapping layers in charge trapping devices. The structural stability and the charge trapping characteristics of such stacks were investigated using Metal-Alumina-Hafnia-Oxide-Silicon (MAHOS) structure. The surface roughness of $HfO_2$ was stable up to 11 nm with the insertion of 0.2 nm thick $Al_2O_3$. The effect of the thickness of the HAH stack and the thickness of intermediate $Al_2O_3$ on charge trapping characteristics were investigated for MAHOS structure under various gate bias pulse with duration of 100 ms. The threshold voltage shift after programming and erase showed that the memory window was increased with increasing bias on gate. However, the programming window was independent of the thickness of HAH charge trapping layers. When the thickness of $Al_2O_3$insertion increased from 0.2 nm to 1 nm, the erase window was decreased without change in the programming window.

Reliability Analysis by Lateral Charge Migration in Charge Trapping Layer of SONOS NAND Flash Memory Devices (SONOS NAND 플래시 메모리 소자에서의 Lateral Charge Migration에 의한 소자 안정성 연구)

  • Sung, Jae Young;Jeong, Jun Kyo;Lee, Ga Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.138-142
    • /
    • 2019
  • As the NAND flash memory goes to 3D vertical Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) structure, the lateral charge migration can be critical in the reliability performance. Even more, with miniaturization of flash memory cell device, just a little movement of trapped charge can cause reliability problems. In this paper, we propose a method of predicting the trapped charge profile in the retention mode. Charge diffusivity in the charge trapping layer (Si3N4) was extracted experimentally, and the effect on the trapped charge profile was demonstrated by the simulation and experiment.

A Study on Characteristics of Wet Gate Oxide and Nitride Oxide(NO) Device (Wet 게이트 산화막과 Nitride 산화막 소자의 특성에 관한 연구)

  • 이용희;최영규;류기한;이천희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.970-973
    • /
    • 1999
  • When the size of the device is decreased, the hot carrier degradation presents a severe problem for long-term device reliability. In this paper we fabricated & tested the 0.26${\mu}{\textrm}{m}$ NMOSFET with wet gate oxide and nitride oxide gate to compare that the characteristics of hot carrier effect, charge to breakdown, transistor Id_Vg curve and charge trapping using the Hp4145 device tester As a result we find that the characteristics of nitride oxide gate device better than wet gate oxide device, especially a hot carrier lifetime(nitride oxide gate device satisfied 30years, but the lifetime of wet gate oxide was only 0.1year), variation of Vg, charge to breakdown and charge trapping etc.

  • PDF

Anomalous Subthreshold Characteristics for Charge Trapping NVSM at memory states. (기억상태에 있는 전하트랩형 비휘발성 반도체 기억소자의 하위문턱이상전류특성)

  • 김병철;김주연;서광열;이상배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.13-16
    • /
    • 1998
  • An anomalous current characteristics which show the superposition of a low current level and high current level at the subthreshold region when SONOSFETs are in memory states were investigated. We have assumed this phenomena were resulted from the effect of parasitic transistors by LOCOS isolation and were modeled to a parallel equivalent circuit of one memory transistor and two parasitic transistors. Theoretical curves are well fitted in measured log I$_{D}$-V$_{G}$ curves independent of channel width of memory devices. The difference between low current level and high current level is apparently decreased with decrease of channel width of devices because parasitic devices dominantly contribute to the current conduction with decrease of channel width of memory devices. As a result, we concluded that the LOCOS isolation has to selectively adopt in the design of process for charge-trap type NVSM.VSM.

  • PDF

Analysis of Trap Dependence on Charge Trapping Layer Thickness in SONOS Flash Memory Devices Based on Charge Retention Model (전하보유모델에 기초한 SONOS 플래시 메모리의 전하 저장층 두께에 따른 트랩 분석)

  • Song, Yu-min;Jeong, Junkyo;Sung, Jaeyoung;Lee, Ga-won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.134-137
    • /
    • 2019
  • In this paper, the data retention characteristics were analyzed to find out the thickness effect on the trap energy distribution of silicon nitride in the silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices. The nitride films were prepared by low pressure chemical vapor deposition (LPCVD). The flat band voltage shift in the programmed device was measured at the elevated temperatures to observe the thermal excitation of electrons from the nitride traps in the retention mode. The trap energy distribution was extracted using the charge decay rates and the experimental results show that the portion of the shallow interface trap in the total nitride trap amount including interface and bulk trap increases as the nitride thickness decreases.

The Effect of Degradation of Gate Oxide on the Electrical Parameters for Sub-Micron MOSFETS (박막 게이트 산화막의 열화에 의해 나타나는 MOSFET의 특성 변화)

  • 이재성;이원규
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.687-690
    • /
    • 2003
  • Experimental results are presented for gate oxide degradation and its effect on device parameters under negative and positive bias stress conditions using NMOSFET's with 3 nm gate oxide. The degradation mechanisms are highly dependent on stress conditions. For negative gate voltage, both hole- and electron-trapping are found to dominate the reliability of gate oxide. However, with changing gate voltage polarity, the degradation becomes dominated by electron trapping. Statistical parameter variations as well as the "OFF" leakage current depend on those charge trapping. Our results therefore show that Si or O bond breakage by electron can be another origin of the investigated gate oxide degradation.gradation.

  • PDF

A Study on Characteristics of Wet Oxide Gate and Nitride Oxide Gate for Fabrication of NMOSFET (NMOSFET의 제조를 위한 습식산화막과 질화산화막 특성에 관한 연구)

  • Kim, Hwan-Seog;Yi, Cheon-Hee
    • The KIPS Transactions:PartA
    • /
    • v.15A no.4
    • /
    • pp.211-216
    • /
    • 2008
  • In this paper we fabricated and measured the $0.26{\mu}m$ NMOSFET with wet gate oxide and nitride oxide gate to compare that the charateristics of hot carrier effect, charge to breakdown, transistor Id_Vg curve, charge trapping, and SILC(Stress Induced Leakage Current) using the HP4145 device tester. As a result we find that the characteristics of nitride oxide gate device better than wet gate oxide device, especially hot carrier lifetime(nitride oxide gate device satisfied 30 years, but the lifetime of wet gate oxide was only 0.1 year), variation of Vg, charge to breakdown, electric field simulation and charge trapping etc.

Characterization of Dielectric Relaxation and Reliability of High-k MIM Capacitor Under Constant Voltage Stress

  • Kwak, Ho-Young;Kwon, Sung-Kyu;Kwon, Hyuk-Min;Sung, Seung-Yong;Lim, Su;Kim, Choul-Young;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.543-548
    • /
    • 2014
  • In this paper, the dielectric relaxation and reliability of high capacitance density metal-insulator-metal (MIM) capacitors using $Al_2O_3-HfO_2-Al_2O_3$ and $SiO_2-HfO_2-SiO_2$ sandwiched structure under constant voltage stress (CVS) are characterized. These results indicate that although the multilayer MIM capacitor provides high capacitance density and low dissipation factor at room temperature, it induces greater dielectric relaxation level (in ppm). It is also shown that dielectric relaxation increases and leakage current decreases as functions of stress time under CVS, because of the charge trapping effect in the high-k dielectric.