Analysis of Trap Dependence on Charge Trapping Layer Thickness in SONOS Flash Memory Devices Based on Charge Retention Model

전하보유모델에 기초한 SONOS 플래시 메모리의 전하 저장층 두께에 따른 트랩 분석

  • Song, Yu-min (Chungnam National University, Department of Electronics Engineering) ;
  • Jeong, Junkyo (Chungnam National University, Department of Electronics Engineering) ;
  • Sung, Jaeyoung (Chungnam National University, Department of Electronics Engineering) ;
  • Lee, Ga-won (Chungnam National University, Department of Electronics Engineering)
  • Received : 2019.12.23
  • Accepted : 2019.12.27
  • Published : 2019.12.31

Abstract

In this paper, the data retention characteristics were analyzed to find out the thickness effect on the trap energy distribution of silicon nitride in the silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices. The nitride films were prepared by low pressure chemical vapor deposition (LPCVD). The flat band voltage shift in the programmed device was measured at the elevated temperatures to observe the thermal excitation of electrons from the nitride traps in the retention mode. The trap energy distribution was extracted using the charge decay rates and the experimental results show that the portion of the shallow interface trap in the total nitride trap amount including interface and bulk trap increases as the nitride thickness decreases.

Keywords

References

  1. French, M. L., Chen, C. Y., Sathianathan, H., & White, M. H. "Design and scaling of a SONOS multidielectric device for nonvolatile memory applications", IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(3), 390-397. (1994). https://doi.org/10.1109/95.311748
  2. Tanaka, H., Kido, M., Yahashi, K., Oomura, M., Katsumata, R., Kito, M., ... & Iwata, Y. "Bit cost scalable technology with punch and plug process for ultra high density flash memory", In 2007 IEEE Symposium on VLSI Technology pp. 14-15. IEEE. (2007).
  3. Katsumata, R., Kito, M., Fukuzumi, Y., Kido, M., Tanaka, H., Komori, Y., ... & Zhang, L. "Pipe-shaped BiCS flash memory with 16 stacked layers and multilevel-cell operation for ultra high density storage devices", In 2009 Symposium on VLSI Technology pp. 136-137. IEEE. (2009).
  4. Jang, J., Kim, H. S., Cho, W., Cho, H., Kim, J., Shim, S. I., ... & Lim, J. S. "Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory", In 2009 Symposium on VLSI Technology pp. 192-193. IEEE. (2009).
  5. Choi, E. S., & Park, S. K. "Device considerations for high density and highly reliable 3D NAND flash cell in near future", In 2012 International Electron Devices Meeting pp. 9-4. IEEE. (2012).
  6. Whang, S., Lee, K., Shin, D., Kim, B., Kim, M., Bin, J., ... & Cho, S. "Novel 3-dimensional dual control-gate with surrounding floating-gate (DC-SF) NAND flash cell for 1Tb file storage application", In 2010 International Electron Devices Meeting pp. 29-7. IEEE. (2010).
  7. Kim, W., Choi, S., Sung, J., Lee, T., Park, C., Ko, H., ... & Park, Y. "Multi-layered vertical gate NAND flash overcoming stacking limit for terabit density storage", In 2009 Symposium on VLSI Technology pp. 188-189. IEEE. (2009).
  8. Ricco, B., Torelli, G., Lanzoni, M., Manstretta, A., Maes, H. E., Montanari, D., & Modelli, A. "Nonvolatile multilevel memories for digital applications", Proceedings of the IEEE, 86(12), 2399-2423. (1998). https://doi.org/10.1109/5.735448
  9. Bez, R., Camerlenghi, E., Modelli, A., & Visconti, A. "Introduction to flash memory", Proceedings of the IEEE, 91(4), 489-502. (2003). https://doi.org/10.1109/JPROC.2003.811702
  10. White, M. H., Yang, Y., Purwar, A., & French, M. L. "A low voltage SONOS nonvolatile semiconductor memory technology", IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 20(2), 190-195. (1997). https://doi.org/10.1109/95.588573
  11. Arreghini, A., Akil, N., Driussi, F., Esseni, D., Selmi, L., & Van Duuren, M. J. "Long term charge retention dynamics of SONOS cells", Solid-State Electronics, 52(9), 1460-1466. (2008). https://doi.org/10.1016/j.sse.2008.04.016
  12. Chang, J. J. "Theory of MNOS memory transistor", IEEE Transactions on Electron Devices, 24(5), 511-518. (1977). https://doi.org/10.1109/T-ED.1977.18770
  13. Chiang, T. Y., Chao, T. S., Wu, Y. H., & Yang, W. L. "High-program/erase-speed SONOS with in situ silicon nanocrystals", IEEE Electron Device Letters, 29(10), 1148-1151. (2008). https://doi.org/10.1109/LED.2008.2002944
  14. Choi, S., Yang, H., Chang, M., Baek, S., Hwang, H., Jeon, S., ... & Kim, C. "Memory characteristics of silicon nitride with silicon nanocrystals as a charge trapping layer of nonvolatile memory devices", Applied Physics Letters, 86(25), 251901. (2005). https://doi.org/10.1063/1.1951060
  15. Lim, J. G., Yang, S. D., Yun, H. J., Jung, J. K., Park, J. H., Lim, C., ... & Lee, G. W. "High performance SONOS flash memory with in-situ silicon nanocrystals embedded in silicon nitride charge trapping layer", Solid-State Electronics, 140, 134-138. (2018). https://doi.org/10.1016/j.sse.2017.10.031
  16. White, M. H. "Charge retention of scaled SONOS nonvolatile memory devices at elevated temperatures", Solid-State Electronics, 44(6), 949-958. (2000). https://doi.org/10.1016/S0038-1101(00)00012-5
  17. Wang, Y., & White, M. H. "An analytical retention model for SONOS nonvolatile memory devices in the excess electron state", Solid-State Electronics, 49(1), 97-107. (2005). https://doi.org/10.1016/j.sse.2004.06.009
  18. Morokov, Y. N., Novikov, Y. N., Gritsenko, V. A., & Wong, H. "Two-fold coordinated nitrogen atom: an electron trap in MOS devices with silicon oxynitride as the gate dielectric", Microelectronic engineering, 48(1-4), 175-178. (1999). https://doi.org/10.1016/S0167-9317(99)00365-2
  19. Wong, H., & Gritsenko, V. A. "Defects in silicon oxynitride gate dielectric films", Microelectronics Reliability, 42(4-5), 597-605. (2002). https://doi.org/10.1016/S0026-2714(02)00005-7
  20. Perera, R., Ikeda, A., Hattori, R., & Kuroki, Y. "Effects of post annealing on removal of defect states in silicon oxynitride films grown by oxidation of silicon substrates nitrided in inductively coupled nitrogen plasma", Thin Solid Films, 423(2), 212-217. (2003). https://doi.org/10.1016/S0040-6090(02)01044-1