• Title/Summary/Keyword: Analytical breakdown voltages

Search Result 17, Processing Time 0.025 seconds

Analytical Breakdown Voltages of $p^{+}n$ Junction in Power Semiconductor Devices (전력 반도체 $p^{+}n$ 접합의 해석적 항복전압)

  • Chung, Yong Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.10 s.340
    • /
    • pp.9-18
    • /
    • 2005
  • Analytical expressions for breakdown voltages of abrupt $p^{+}n$ junction of Si, GaAs, InP and In$In_{0.53}Ga_{0.47}AS$ were induced. Getting analytical breakdown voltages, effective ionization coefficients were extracted using lucky drift parameters of Marsland for each materials. The results of analytical breakdown voltages followed by ionization integral agreed well with experimental result within 10$\%$ in error for the doping concentration in the range of $10^{14}cm\;^{-3}\~5\times10\;^{17}cm\;^{-3}$.

Analytical Model of Breakdown Voltages for Abrupt pn Junctions in III-V Binary Semiconductors (III-V족 반도체에서 계단형 pn 접합의 해석적 항복전압 모델)

  • 정용성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.1-9
    • /
    • 2004
  • Analytical expressions for breakdown voltages of abrupt pn junction in GaP, GaAs and InP of III-V binary semiconductors was induced. Getting analytical breakdown voltage, effective ionization coefficients were extracted using ionization coefficient parameters for each materials. The result of analytical breakdown voltages followed by ionization integral agrees well with numerical and experimental results within 10% in error.

Analytical Model for Breakdown Voltages of InP Diodes (InP 다이오드에서 항복전압의 해석적 모델)

  • Chung, Yong-Sung
    • 전자공학회논문지 IE
    • /
    • v.44 no.1
    • /
    • pp.10-14
    • /
    • 2007
  • Analytical expression for breakdown voltages of InP diodes is induced by employing the effective ionization coefficient extracted from ionization coefficients for electron and hole in InP. The analytical results for breakdown voltage are compared with numerical and experimental results for the doping concentration, $N_D=6\times10^{14}cm^{-3}\sim3\times10^{17}cm^{-3}$. The analytical results show good agreement with the numerical data. Good fits with the experimental results are found for the breakdown voltages within 10% in error at each doping concentration.

Analytical Model of Breakdown Voltages for 6H-SiC $p^{+}n$ Junction (6H-SiC $p^{+}n$ 접합의 항복 전압을 위한 해석적 모형)

  • Jeong, Yong-Seong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.6
    • /
    • pp.398-403
    • /
    • 2001
  • In this paper, effective ionization coefficient for 6H-SiC is determined. Analytical formulas for the parallel plane breakdown voltage of the 6H-SiC p+n junction are derived by employing the ionization coefficients. The analytical breakdown voltages show good agreement with the numerical results of Dmitriev's[3]and the experimental results of Cree Research[9]over the doping range from 10$^{15}$ cm$^{-3}$ to 10$^{18}$ cm$^{-3}$.

  • PDF

Analysis of the Three-Dimentional Effects on the Breakdown Voltage in Non-reachthrough Planar Junctions (Non-reachthrough 평면 접합의 항복전압에 대한 3 차원 효과의 해석)

  • 김성동;김일중;최연익;한민구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.111-118
    • /
    • 1995
  • The three-dimentional effects on the breakdown voltage of non-reachthrough planar junctions which have the finite lateral radius of window curvature are analytically investigated. The critical electric fields at breakdown and the breakdown voltages are expressed successfully in a form which is normalized to the parallel plane case. The analytical results are in excellent agreement with the published results of experiment and the quasi-three-dimensional device simulation by MEDICI for non-reachthrough plane junctions having different background doping and junction depth. The results may be applicable to the estimations of breakdown voltages in many practical power devices.

  • PDF

Analytical Expressions of Temperature Dependent Breakdown Voltage and On-Resistance for Si Power MOSFETs (실리콘 전력 MOSFET의 온도 관련 항복 전압과 ON 저항을 위한 해석적 표현)

  • 정용성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.290-297
    • /
    • 2003
  • Analytical Expressions of temperature dependent breakdown voltage and on-resistance for silicon power MOSFETs are induced by employing the temperature dependent effective ionization coefficient extracted from temperature dependent ionization coefficients for electron and hole, and electron mobility in silicon. The analytical results for temperature dependent breakdown voltage are compared with experimental results for tile doping concentration, 4x10$^{14}$ cm$^{-3}$ , 1x10$^{15}$ cm$^{-3}$ , 6x10$^{16}$ cm$^{-3}$ respectively. The variations of temperature dependent on-resistance and breakdown voltage dependent ideal specific on-resistance are also compared with the ones reported previously. Good fits with the experimental results ate found for the breakdown voltages within 10% in error for the temperature in the range of 77~300K at each doping concentration.

Relation between Conduction Path and Breakdown Voltages of Double Gate MOSFET (DGMOSFET의 전도중심과 항복전압의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.917-921
    • /
    • 2013
  • This paper have analyzed the change of breakdown voltage for conduction path of double gate(DG) MOSFET. The low breakdown voltage among the short channel effects of DGMOSFET have become obstacles of device operation. The analytical solution of Poisson's equation have been used to analyze the breakdown voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The change of breakdown voltages for conduction path have been analyzed for device parameters such as channel length, channel thickness, gate oxide thickness and doping concentration. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. Resultly, we know the breakdown voltage is greatly influenced on the change of conduction path for device parameters of DGMOSFET.

Modeling for Temperature Dependent Effective ionization Coefficient of Si $p^+n$ Junction Diodes (Si $p^+n$ 접합 다이오드의 온도를 고려한 유효 이온화 계수 모델링)

  • Chung Yong Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • In this paper, temperature dependence of effective ionization coefficient in Si is formulated as a single polynomial function of temperature, which allows analytical expressions for breakdown voltage of Si $p^+n$ junction as a function of temperature. The analytical breakdown voltages agree well with the simulation as well as the experimental ones reported within $3\%$ in error for the doping concentrations in the range of $10^{14}cm^{-3}{\~} 10^{17}cm^{-3}$ at 100K, 300K and 500K.

Analytical Expressions for Breakdown Voltage and Specific On-Resistance of 6H-SiC PN Diodes (6H-SiC PN 다이오드의 항복전압과 온-저항을 위한 해석적 표현)

  • Chung, Yong-Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.1-5
    • /
    • 2009
  • Analytical expressions for breakdown voltage and specific on-resistance of 6H-SiC PN diodes have been derived successfully by extracting an effective ionization coefficient from ionization coefficients for electron and hole in 6H-SiC. The breakdown voltages induced from our analytical model are compared with experimental results. The variation of specific on-resistance as a function of doping concentration is also compared with the one reported previously. Good fits with experimental results are found for the breakdown voltage within 10% in error for the doping concentration in the range of $10^{15}{\sim}10^{18}cm^{-3}$. The analytic results show good agreement with the numerical data for the specific on-resistance in the region of $5{\times}10^{15}{\sim}10^{16}cm^{-3}$.

A Breakdown Voltage Modeling of the GaAs Schottky Rectifiers (GaAs 쇼트키 정류기의 항복전압 모델링)

  • Chung, Yong-Sung;Han, Seung-Youp;Choi, Yearn-Ik
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1431-1433
    • /
    • 1996
  • Effective ionization coefficients for (100), (110) and (111) oriented gallium arsenide are extracted from the ionization coefficients far electrons and holes. Analytical formulas for the breakdown voltage of the GaAs Schottky rectifiers are derived by employing the ionization coefficients. The breakdown voltages obtained from our analytical model agree fairly well with the numerical results as well as the experimental ones reported in the range of $10^{14}\;cm^{-3}$ - $5{\times}10^{17}\;cm^{-3}$ doping concentrations.

  • PDF